Finite element modeling and analysis of piezoelectric device of energy storage in the form of a circular plate with the piezoelements

Authors

  • Solovyev A.N. Don State Technical University, Rostov-on-Don, Российская Федерация
  • Le V.Z. Don State Technical University, Rostov-on-Don, Российская Федерация

UDC

539.3:534.1

Abstract

In this paper, the three-dimensional finite element model of the energy storage device is in the form of a bimorph - circular plate fixed the contour in the device frame using piezoelectric ceramics. The device frame makes the vertical harmonic vibrations with the given amplitude and frequency. We investigate simplified accounting model of the inertial mass. By developed models directly calculated in packages ANSYS and ACELAN, the dependence of the natural frequencies and the output voltage on the geometrical dimensions, material combinations and ways to fix the inertial mass is investigated. The result of calculations offered the construction of the device, which has the greatest efficiency.

Keywords:

finite element modeling, energy storage, piezoelectric, optimization, bimorph

Acknowledgement

Работа выполнена при частичной финансовой поддержки РФФИ (13-01-00196 А, 13-01-00943 А).

Author Infos

Arkadiy N. Solovyev

д-р физ.-мат. наук, заведующий кафедрой теоретической и прикладной механики Донского государственного технического университета

e-mail: solovievarc@gmail.com

Van Zyong Le

аспирант кафедры теоретической и прикладной механики Донского государственного технического университета

e-mail: leduong145@gmail.com

References

  1. Priya S., Inman D.J. Energy harvesting technologies. Springer Science+Business Media, LLC. 2009. 522 p.
  2. Erturk A., Inman D.J. Piezoelectric energy harvesting. John Wiley & Sons, Ltd., 2011. 402 p.
  3. Minazara E., Vasic D., Costa F. Piezoelectric Generator Harvesting Bike Vibrations Energy to Supply Portable Devices. In: Proc. of ICREPQ. 12-14 march 2008 Santander, Spain. 6 p.
  4. Anton S.R., Sodano H.A. A review of power harvesting using piezoelectric materials (2003-2006) // Smart Mater. Struct. 2007. Vol. 16. No. 3. P. 1-21.
  5. Priya S. Advances in energy harvesting using low profile piezoelectric transducers // J. of Electroceramics. 2007. Vol. 19. P. 165-182.
  6. Sodano H., Inman D., Park G. Generation and storage of electricity from power harvesting devices // J. Intell. Mater. Syst. Struct. 2005. Vol. 16. P. 67-75.
  7. Jyh-Cheng Yu, Chin-Bing Lan. System modeling of microaccelerometer using piezoelectric thin films // Sensors and Actuators A. 2001. Vol. 88. P. 178-186.
  8. Adhikari S., Friswell M.I., Inman D.J. Piezoelectric energy harvesting from broadband random vibrations // Smart Mater. Struct, 2009, Vol. 18. P. 115005-115012.
  9. Litak G., Friswell M.I., Adhikari S. Magnetopiezoelastic energy harvesting driven by random excitations // Appl. Phys. Lett. 2010. Vol. 96. No. 5. P. 214103:1-3.
  10. Sodano H.A., Park G., Inman D.J. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting // Strain. 2004. Vol. 40. No. 2. P. 49-58.
  11. Parton V.Z., Kudryavtsev B.A. Electromagnetoelasticity of Piezoelectrics and Electrically Conductive Solids. M.: Nauka, 1988. P. 1-472.
  12. Huan Xue, Hongping Hu. Nonlinear Characteristics of a Circular Plate Piezoelectric Harvester with Relatively Large Deflection Near Resonance // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. Vol. 55. No. 9. September 2008. P. 2092-2096.
  13. Белоконь А.В., Наседкин А.В., Соловьев А.Н. Новые схемы конечно-элементного динамического анализа пьезоэлектрических устройств // Прикладная математика и механика. 2002. Т. 66. No. 3. С. 491-501.

Issue

Pages

112-119

Submitted

2013-07-11

Published

2013-12-30

How to Cite

Solovyev A.N., Le V.Z. Finite element modeling and analysis of piezoelectric device of energy storage in the form of a circular plate with the piezoelements. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2013, no. 4, pp. 112-119. (In Russian)