Experimental study of electric current rectification in liquid microdiodes on the basis of electrokinetic instability

Authors

  • Frantz E.A. Kuban State University, Krasnodar, Russian Federation
  • Schiffbauer J. Technion - Israel Institute of Technology, Haifa, Israel
  • Demekhin E.A. Kuban State University, Krasnodar, Russian Federation

UDC

532, 537.2, 537.36

Abstract

One of the problems of the application of microfluidics is creation rectifying micro- or nanodevices, which rectify electric current. At the heart of known micro diodes laid the principle of asymmetry of a particular type. In this article experimentally implemented a new idea current rectification in microscales, which consists in use of combination asymmetry of the flow of ions, depending on the direction, namely, geometric asymmetry and asymmetry caused by electrokinetic instability. The device represents two channels: 2 cm macrochannel and 200 mkm microchannel, which separated by a semipermeable electric membrane. For production of the device the standard method of a photolithography is used. The liquid rectifier is connected to the high-voltage power supply by means of wire electrodes. The experiments are made in the frequency range of 1-10 Hz, current to 20 $\mu$A. The applied voltage is varied up to 1,000 V. The behavior of the current-voltage characteristics at a positive voltage is very close to linear, up to 100 V. At voltages of 700 V were fixed the irregular oscillations of the current (about 1%), at which the quality of rectification increased sharply. We explain this phenomenon of the emergence, because of electrokinetic instability of microvortices in macrochannel and their absence in the microchannel. This gives an additional asymmetry with respect to the direction of ion flow, which leads to a better rectifying effect

Keywords:

microdiode, fluidic current rectification, electrokinetic instability, photolithography, semipermeable membrane, geometric asymmetry, electrolyte

Acknowledgement

Работа выполнена при поддержке РФФИ (13-08-96536_р_юг_а, 14-08-00789 А, 14-08-01171 А).

Author Infos

Elizaveta A. Frantz

магистрант кафедры математического моделирования Кубанского государственного университета

e-mail: gandizel@mail.ru

Jarrod Schiffbauer

д-р физ.-мат. наук, научный сотрудник лаборатории микро- и нанодлюидики, Технион - Израильский технологический институт

e-mail: jarrod.schiffbauer@gmail.com

Evgeniy A. Demekhin

д-р физ.-мат. наук, профессор кафедры вычислительной математики и информатики Кубанского государственного университета

e-mail: edemekhi@gmail.com

References

  1. Nguyen N.T., Wereley S.T. Fundamentals and applications of microfluidics. Boston, Artech House. 2006. 520 p.
  2. Cheng L-J., Guo L-J. Nanofluidic diodes. Chem. Soc. Rev, 2010, vol. 39, pp. 923-938.
  3. Vlassiouk I., Siwy Z.S. Nanofluidic diode. Nano Lett., 2007, vol. 7, pp. 552-556.
  4. Karnik R., Duan C., Castelino K., Daiguji A., Majumdar A. Rectification of Ionic Current in a Nanofluidic Diode. Nano Lett., 2007, vol. 7, no. 3, pp. 547-551.
  5. Siwy Z. Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater., 2006, vol. 16, pp. 735-746.
  6. Wei Ch., Bard A.J., Mirkin M.V. Scanning Electrochemical Microscopy. Application of SECM to the study of charge transfer processes at the liquid/liquid Interface. Phys. Chem., 1995, vol. 99, no. 43, pp. 16033-16042.
  7. Daiguji H., Oka Y., Shirono K. Nanofluidic Diode and Bipolar Transistor. Nano Lett., 2005, vol. 5, pp. 2274-2280.
  8. Chang H.-C., Yossifon G. Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics, 2009, vol. 3, pp. 012001-012016.
  9. Yossifon G., Chang H.-C. Selection of Nonequilibrium Overlimiting Currents: Universal Depletion Layer Formation Dynamics and Vortex Instability. Phys. Rev. Lett., 2008, vol. 101, pp. 254501-254505.
  10. Demekhin E.A., Baryshev M.G., Ganchenko G.S., Gorbachjova E.V. Ob odnom principe vyprjamlenija toka v mikromasshtabah [On a principle of rectification in the microscale]. Prikladnaja matematika i teoreticheskaja fizika [Applied mathematics and theoretical physics], 2014, no. 5, pp. 21-27. (In Russian)
  11. Demekhin E.A., Baryshev M.G., Gorbacheva E.V., Franc E.A. K teorii zhidkostnogo mikrodioda [On the theory of liquid mikrodioda]. Jekologicheskij vestnik nauchnyh centrov Chernomorskogo jekonomicheskogo sotrudnichestva [Ecology bulletin of research centers of the Black Sea Economic Cooperation], 2013, no. 3, pp. 31-37. (In Russian)
  12. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale Electrokinetics and Microvortices: How Microhydrodynamics Affects Nanofluidic Ion Flux. Annu. Rev. Fluid Mech., 2012, vol. 44, pp. 401-426.
  13. Zaltzman B., Rubinstein I. Electroosmotic slip and electroconvective instability. J. Fluid Mech., 2007, vol. 579, pp. 173-226.
  14. Belova E.I., Lopatkova G.Y., Pismenskaya N.D., Nikonenko V.V., Larchet C., Pourcelly G. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B, 2006, vol. 110, no. 27, pp. 13458-13469.

Issue

Pages

69-74

Submitted

2014-05-30

Published

2014-09-29

How to Cite

Frantz E.A., Schiffbauer J., Demekhin E.A. Experimental study of electric current rectification in liquid microdiodes on the basis of electrokinetic instability. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, no. 3, pp. 69-74. (In Russian)