On the effect of variable coefficient of friction on the horizontal resistance of the stamp

Authors

  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation
  • Evdokimova O.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Eletskiy Yu.B. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Lozovoy V.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Evdokimov V.S. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Khripkov D.A. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-15-4-12-16

Abstract

Article deal with the contact problems on the surface interaction of rigid stamps with a deformed layered provided that the variable friction coefficients arise in the contact zone as a function of the coordinate under the horizontal motion of stamps. The cause of the variable friction coefficients arising may be surface phenomena induced by a complex rheology of the deformed-medium surface, the chemical reactions proceeding, or a change in the properties of the contact surface of the stamps, for example, as a result of the presence of separate particles of the wear contact surface of the stamp and the base. The influence of the variable friction coefficients on the horizontal existence of the semi-infinite stamp is investigated.

Keywords:

contact problems, integral equations, semi-infinite domain, block element, factorization, variable friction coefficients

Acknowledgement

Отдельные фрагменты работы выполнены в рамках реализации Госзадания на 2018 г., проекты ЮНЦ РАН на 2018 г. (проект 00-18-04) № госрег. 01201354241, программ президиума РАН П-16 (проект 00-18-21) и П-52 (проект 00-18-29), и при поддержке грантов РФФИ (проекты 16-41-230214, 16-41-230218, 16-48-230216, 17-08-00323, 18-08-00465, 18-01-00384, 18-05-80008).

Author Infos

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, зав. кафедрой математического моделирования Кубанского государственного университета, директор Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета, заведующий лабораторией Южного федерального университета

e-mail: babeshko41@mail.ru

Olga V. Evdokimova

д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

e-mail: evdokimova.olga@mail.ru

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Yuri B. Eletskiy

заведующий лабораторией Южного научного центра РАН

e-mail: elezkiy@priazovneft.ru

Viktor V. Lozovoy

канд физ.-мат. наук, научный сотрудник Южного научного центра РАН

e-mail: niva_kgu@mail.ru

Vladimir S. Evdokimov

студент Кубанского государственного университета, лаборант Южного научного центра РАН

e-mail: evdok_vova@mail.ru

Dmitry A. Khripkov

научный сотрудник Кубанского государственного университета

e-mail: vestnik@kubsu.ru

References

  1. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Blochnye elementy v kontaktnykh zadachakh s peremennym koeffitsientom treniya [Block elements in contact problems with variable coefficient of friction]. Doklady Akademii nauk [Rep. of Russian Academy of Sciences], 2018, vol. 480, no. 5, pp. 537–541. (In Russian)
  2. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Ob odnoy faktorizatsionnoy zadache Gil'berta–Vinera i metode blochnogo elementa [On one Hilbert–Wiener factorization problem and the block element method]. Doklady Akademii nauk [Rep. of Russian Academy of Sciences], 2014, vol. 459, no. 5, pp. 557–561. (In Russian)
  3. Goryacheva, I.G., Dobychin, M.N. Kontaktnye zadachi tribologii [Contact problems of tribology]. Mashinostroenie, Moscow, 1988. (In Russian)
  4. Muskhelishvili, N.I. Singulyarnye integral'nye uravneniya [Singular integral equation]. Nauka, Moscow, 1962. (In Russian)
  5. Vekua, N.P. Sistemy singulyarnykh integral'nykh uravneniy [Systems of singular integral equations]. Nauka, Moscow, 1970. (In Russian)
  6. Gakhov, F.D. Kraevye zadachi [Boundary value problems]. Nauka, Moscow, 1977. (In Russian)
  7. Nobl, B. Metod Vinera–Khopfa [Wiener-Hopf method]. Inostrannaya literatura, Moscow, 1962. (In Russian)
  8. Litvinchuk, G.S., Spitkovskiy, I.M. Faktorizatsiya matrits-funktsiy [Factorization of matrix functions]. Deposited to VINITI no. 2410-84, part I, 1984; part II, 1984. (In Russian)
  9. Gokhberg, I.Ts., Kreyn, M.G. Sistemy integral'nykh uravneniy na polupryamoy, s yadrami, zavisyashchie ot raznosti argumentov [Systems of integral equations on a semi-direct, with kernels depending on the difference of arguments]. Uspekhi matematicheskikh nauk [Advances in Mathematical Sciences], 1958, vol. 13, iss. 2, pp. 3–72. (In Russian)

Issue

Section

Mechanics

Pages

12-16

Submitted

2018-11-15

Published

2018-12-21

How to Cite

Babeshko V.A., Evdokimova O.V., Babeshko O.M., Eletskiy Yu.B., Lozovoy V.V., Evdokimov V.S., Khripkov D.A. On the effect of variable coefficient of friction on the horizontal resistance of the stamp. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, vol. 15, no. 4, pp. 12-16. DOI: https://doi.org/10.31429/vestnik-15-4-12-16 (In Russian)