Modeling the influence of different forms of anisotropy of crystal on the growth of dendritic crystals

Authors

  • Miryushchenko N.I. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Российская Федерация
  • Malibashev A.V. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Российская Федерация

UDC

621.315.592

DOI:

https://doi.org/10.31429/vestnik-15-4-93-97

Abstract

The physical-mathematics model demonstrates the process of growth of crystalline structures from a solution, taking into account possible factors affecting crystal growth. Anisotropy of crystals is one of the most significant factors affecting the change in the shape of the inclusion in the process of its movement. The simulation was carried out using numerical methods in the integrated software development environment. The result of the program implementation of the proposed mathematical models and algorithms was the computer system for modeling crystal growth from the solution. With the help of simulation modeling, the influence of different forms of anisotropy on the form of growth of dendritic crystals was studied.

Keywords:

physics and mathematical model, crystallization, modeling the growth of crystalline structures, anisotropy of crystals

Author Infos

Nikolai I. Miryushchenko

студент 2 курса магистратуры Южно-Российского государственного политехнического университета (НПИ) им. М.И. Платова

e-mail: miruha007@mail.ru

Aleksandr V. Malibashev

канд. техн. наук, доцент кафедры физики и электроники Южно-Российского государственного политехнического университета (НПИ) им. М.И. Платова

e-mail: a_malib@mail.ru

References

  1. Shablovskiy, O.N. Morfologicheskie svoystva linii rosta dvumernogo dendrita v pereokhlazhdennom rasplave [Morphological properties of two-dimensional dendrite growth line in supercooled melt]. Prikladnaya fizika [Applied Physics], 2012, no. 4, pp. 40–46. (In Russian)
  2. Toropova, L.V., Aleksandrov, D.V., Galenko, P.K. K voprosu ob ustoychivom roste anizotropnogo dendrita pri konvektivnom teploperenose v zhidkoy faze u poverkhnosti dendrita [On the stable growth of anisotropic dendrite at convective heat transfer in the liquid phase at the surface of dendrite]. Rasplavy [Melts], 2018, no. 3, pp. 320–329. (In Russian)
  3. Granasy, L., Ratkai, L., Szalias, A., Korbuly, B., Toth, G.I., Kornyei, L., Pusztai, T. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites – A Review. Metallurgical and Matherials Transactions, 2014, vol. 45a, pp. 1694–1719. DOI: 10.1007/s11661-013-1988-0
  4. Kozak, O.V., Galenko, P.K., Aleksandrov, D.V. Vliyanie konvektivnogo potoka na rost chistogo i splavnogo dendrita [The influence of convective flow on the growth of pure and alloyed dendrite]. Vestnik Udmurtskogo universiteta. Matematika, mekhanika, komp'yuternye nauki [Bulletin of the Udmurt University. Mathematics, mechanics, computer science], 2016, vol. 26, iss. 3, pp. 299–311. (In Russian)
  5. Nagiev, A.G., Mamedov, D.I. Modelirovanie nestatsionarnykh protsessov perenosa veshchestva i adsorbtsii v poristoy srede na osnove fraktala "Gubka Mengera" [Modeling of non-stationary processes of substance transfer and adsorption in a porous medium based on fractal "Menger Sponge"]. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya [Proc. of Higher Educational Institutions. Series: Chemistry and Chemical Technology], 2009, vol. 52, no. 10, pp. 141–145. (In Russian)
  6. Titova, E.A., Aleksandrov, D.V., Galenko, P.K. Nestatsionarnyy rezhim rosta pervichnykh dendritov [Non-stationary mode of growth of the primary dendrite]. Matematicheskoe modelirovanie v estestvennykh naukakh [Mathematical modeling in the natural Sciences], 2016, vol. 1, pp. 537–538. (In Russian)
  7. Khalirakhmanov, D.I., Mayakova, S.A. Parallel'nyy algoritm modelirovaniya rosta dendritnykh kristallicheskikh struktur [Parallel algorithm for modeling the growth of dendritic crystal structures]. In: Parallel'nye vychislitel'nye tekhnologii (PaVT'2012): Trudy Mezhdunarodnoy nauchnoy konferencii [Parallel computing technologies (Pavt'2012): Proc. of the Int. Scientific Conf.], Novosibirsk, March 26–30, 2012, 2012, pp. 704–710. (In Russian)
  8. Baranov, V.G., Khramov, A.G. Modelirovanie protsessa rosta dendritnykh kristallicheskikh struktur [Modeling of growth of dendritic crystal structures]. Komp'yuternaya optika [Computer optics], 2001, no. 21, pp. 193–197. (In Russian)
  9. Vaynshteyn, B.K., Fridkin, V.M., Indenbom, V.L., et al. Sovremennaya kristallografiya. T. 2: Struktura kristallov [Modern crystallography, vol. 2: Crystal Structure], Nauka, Moscow, 1979. (In Russian)
  10. Malibashev, A.V. Vliyanie anizotropii kristalla na formu zhidkogo vklyucheniya, dvizhushchegosya v pole temperaturnogo gradienta [The effect of crystal anisotropy on the shape of a liquid inclusion moving in the temperature gradient field]. In: Kristallizatsiya i svoystva kristallov: Mezhvuz. sbornik nauchnih trudov Yuzhno-Rossiskogo gosudarstvennogo tekhnicheskogo universiteta (NPI) [Crystallization and properties of crystals: Interuniversity Scientific Proc. of Southern Russian State Tech. University (NPI)], Nabla, Novocherkassk, 2003. pp. 38–43. (In Russian)

Issue

Section

Physics

Pages

93-97

Submitted

2018-03-12

Published

2018-12-21

How to Cite

Miryushchenko N.I., Malibashev A.V. Modeling the influence of different forms of anisotropy of crystal on the growth of dendritic crystals. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, vol. 15, no. 4, pp. 93-97. DOI: https://doi.org/10.31429/vestnik-15-4-93-97 (In Russian)