Axisymmetric thermoelastic deformation of transversely isotropic rotation bodies
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-16-1-31-40Abstract
The aim of the work is to determine the axisymmetric stress-strain state of anisotropic bodies of revolution under the influence of an external load, and unbalanced and under conditions of temperature influences with missing internal heat sources.
This problem is provided by the development of the method of boundary states on the class of axisymmetric problems of thermoelasticity for anisotropic bodies of revolution. Development of the theory of constructing the bases of spaces of internal states, including displacement, deformation, stresses and temperature. The basis is formed on the basis of the general solution of the thermoelasticity problem for a transversely isotropic body of revolution and the formation of the relations determining the desired elastic state.
To determine the elastic axisymmetric state from the action of mass forces, it is assumed that the inverse method is extended to a class of problems for anisotropic bodies. By rheology, the inverse method is similar to the method of boundary states. The basis of the space of states is formed with the help of fundamental polynomials. After the orthogonalization of the basis, the desired state is determined by the Fourier series, the coefficients of which are definite integrals whose nuclei constitute the multiplication of temperatures.
The solution of the boundary value problem of mechanics is assumed to be a means of the method of boundary states. The basis of the space of internal states is formed according to the fundamental system of Weierstrass polynomials. The mechanical characteristics are expanded in a series of elements of the orthonormal basis, where the scalar products having the energy sense act as coefficients.
The final result is written as the sum of three independent states. The solution of the test problem for a circular cylinder from a rock with the corresponding conclusions is given, the design problem for a body of revolution is a stepped cylinder. Explicit and indirect signs of the convergence of the solution of problems and graphical visualization of the results are presented.
Keywords:
anisotropy, thermoelasticity, boundary state method, inverse method, mass forces, axisymmetric problems, boundary value problemsReferences
- Novaczkij V. Teoriya uprugosti [Theory of elasticity]. Mir, Moscow, 1975. (In Russian)
- Pobedrya B.E. Mexanika kompozicionny'x materialov [Mechanics of composite materials]. Izdatelstvo MGU, Moscow, 1984. (In Russian)
- Kravchuk A.S., Kozhevnikov V.P., Urzhumcev Yu.S. Mexanika polimerny'x i kompozicionny'x materialov [Mechanics of polymeric and composite materials]. Nauka, Moscow, 1985. (In Russian)
- Penkov V.B., Viktorov D.V., Satalkina L.V. Razvitie metoda granichny'x sostoyanij na klass zadach termouprugosti [Development of the boundary state method for a class of thermoelasticity problems]. Materialy' mezhdunarodnoj nauchnoj konferencii 'Sovremenny'e problemy' matematiki, mexaniki, informatiki'' [Proceedings of the international scientific conference 'Current problems of mathematics, mechanics, computer science''], Rossiya, Tula, TulGU, 2008. pp. 274–277. (In Russian)
- Xanzhov B.D. Variacionnoe reshenie osesimmetrichnoj zadachi termouprugosti dlya transversal'no-izotropnogo cilindra konechnoj dliny' [Variational solution of the axisymmetric problem of thermoelasticity for a transversely isotropic cylinder of finite length]. Izvestiya vuzov. Matematika [News of universities. Maths], 1967, No. 12, pp. 84–89. (In Russian)
- Levina L.V., Kuzmenko N.V. Obratny'j metod e'ffektivnogo analiza sostoyaniya uprugogo tela ot massovy'x sil iz klassa neprery'vny'x [The inverse method of effective analysis of the state of an elastic body from mass forces from the class of continuous]. XI Vserossijskij s'ezd po fundamental'ny'm problemam teoreticheskoj i prikladnoj mexaniki: sbornik dokladov (Kazan', 20–24 avgusta 2015 g.) [XI All-Russian Congress on the fundamental problems of theoretical and applied mechanics: a collection of reports (Kazan, August 20–24, 2015)]. Cost. D.Yu. Axmetov, A.N. Gerasimov, Sh.M. Xajdarov, pod red. D.A. Gubajdullina, A.M. Elizarova, E.K. Lipachyova. Kazan': Izdatelstvo Kazan. un-ta, 2015, pp. 2276–2278. (In Russian)
- Ivany'chev D.A. Metod granichny'x sostoyanij v prilozhenii k osesimmetrichny'm zadacham dlya anizotropny'x tel [The boundary state method applied to axisymmetric problems for anisotropic bodies]. Vesti vy'sshix uchebny'x zavedenij Chernozem'ya. Nauchno-texnicheskij i proizvodstvenny'j zhurnal [Conduct higher education institutions Chernozem. Scientific, technical and industrial journal]. Lipeczk, LGTU. No. 1, 2014, pp. 19–26. (In Russian)
- Penkov V.B., Penkov V.V. Metod granichny'x sostoyanij dlya resheniya zadach linejnoj mexaniki [The boundary state method for solving linear mechanics problems]. Dal'nevostochny'j matematicheskij zhurnal [Far Eastern Mathematical Journal], 2001, Vol. 2, No. 2, pp. 11–137. (In Russian)
- Aleksandrov A.Ya., Solov'ev Yu.I. Prostranstvenny'e zadachi teorii uprugosti (primenenie metodov teorii funkcij kompleksnogo peremennogo) [Spatial problems of the theory of elasticity (application of methods of the theory of functions of a complex variable)], Moscow, Nauka Publ, Glavnaya redakciya fiziko-matematicheskoj literatury', 1978, 464 p. (In Russian)
- Satalkina L.V. Narashhivanie bazisa prostranstva sostoyanij pri zhestkix ogranicheniyax k e'nergoemkosti vy'chislenij [Building up the basis of the state space with hard constraints on the energy intensity of computations] Sbornik tezisov dokladov nauchnoj konferencii studentov i aspirantov Lipeczkogo gosudarstvennogo texnicheskogo universiteta [Collection of theses of reports of the scientific conference of students and graduate students of Lipetsk State Technical University], Lipeczk, LGTU, 2007, pp. 130–131. (In Russian)
- Lexniczkij S.G. Teoriya uprugosti anizotropnogo tela [Theory of elasticity of anisotropic body]. Izd. 2, Moscow: Nauka Publ., 1977, 416 p. (In Russian)
- Yudin V.A., Korolyov A.V., Afanaskin I.V., Vol'pin S.G. Teployomkost' i teploprovodnost' porod i flyuidov bazhenovskoj svity' – isxodny'e danny'e dlya chislennogo modelirovaniya teplovy'x sposobov razrabotki [Heat capacity and thermal conductivity of rocks and fluids of the Bazhenov formation are the initial data for the numerical simulation of thermal methods of development] Moscow, FGU FNCz NIISI RAN, 2015. 22 p. (In Russian)
- Dobry'nin V.M., Vendel'shtejn B.Yu., Kozhevnikov D.A. Petrofizika (Fizika gorny'x porod): Ucheb. dlya vuzov. 2-oe izd. pererab. i dop. pod redakciej doktora fiziko-matematicheskix nauk D.A. Kozhevnikova [Petrophysics (Physics of rocks): Proc. for universities. 2nd ed. reclaiming and add. Edited by Doctor of Physical and Mathematical Sciences D.A. Kozhevnikova] Moscow, FGUP Izdatel'stvo "Neft' i gaz" RGU nefti i gaza im. I.M. Gubkina, 2004, 368 p. (In Russian)
- Nevil' A.M. Svojstva betona [Concrete properties]. Izdatel'stvo literatury' po stroitel'stvu. Moskva, 1972, 343 p. (In Russian)
- Fizicheskie svojstva gorny'x porod i polezny'x iskopaemy'x (petrofizika). Spravochnik geofizika [Physical properties of rocks and minerals (petrophysics). Handbook of Geophysics] Pod red. N.B. Dortman, – 2-e izd., pererab. i dop, Moskva, Nedra, 1984, 455 p. (In Russian)
Downloads
Submitted
Published
How to Cite
Copyright (c) 2019 Ivanychev D.A.
This work is licensed under a Creative Commons Attribution 4.0 International License.