Mathematical modeling of vortex structures during electroconvection in the electrodialyzer cell channel on model membranes with two conducting~sections

Authors

  • Zabolotsky V.I. Kuban State University, Krasnodar, Российская Федерация
  • Lebedev K.A. Kuban State University, Krasnodar, Российская Федерация
  • Vasilenko P.A. Kuban State University, Krasnodar, Российская Федерация
  • Kuzyakina M.V. Kuban State University, Krasnodar, Российская Федерация

UDC

517.958:544.6

DOI:

https://doi.org/10.31429/vestnik-16-1-73-82

Abstract

The article deals with mathematical modeling of the mechanism of electroconvection in electromembrane systems. The simulation is carried out by solving two-dimensional Navier-Stokes equations for incompressible fluid with boundary adhesion conditions and a given volume force distribution in accordance with the Rubinstein theory. It is shown that the volume force induced by current flow that can generate paired electroconvective vortices (electroosmosis of the second kind). It is shown that the most important parameters affecting the electroconvection are the limit current, the size of the inhomogeneities and the value of the space charge.

Keywords:

ion exchange membrane, electroconvection, morphology, vortexes, modeling

Acknowledgement

Работа выполнена при финансовой поддержке гранта РФФИ и администрации Краснодарского края (проект №16-48-230433р_а).

Author Infos

Viktor I. Zabolotsky

д-р хим. наук, профессор, заведующий кафедрой физической химии Кубанского государственного университета

e-mail: vizab@chem.kubsu.ru

Konstantin A. Lebedev

д-р физ.-мат. наук, доцент кафедры прикладной математики Кубанского государственного университета

e-mail: klebedev.ya@yandex.ru

Polina A. Vasilenko

аспирант Кубанского государственного университета

e-mail: polig@mail.ru

Marina V. Kuzyakina

канд. физ.-мат. наук, доцент кафедры геоинформатики Кубанского государственного университета

e-mail: MarinaVKuazykina@gmail.com

References

  1. Rubinshtein, Y., Shtilman, L. Voltage against current curves of cation-exchange membranes. Mi>Y. Chem. Soc. Faraday Trans. II, 1979, vol. 75, pp. 231–246. DOI: 10.1039/F29797500231
  2. Zabolotskii, V.I., Nikonenko, V.V., Urtenov, M.Kh., Lebedev, K.A., Bugakov, V.V. Electroconvection in systems with heterogeneous ion-exchange membranes. Mi>Russ. J. Electrochem., 2012, vol. 48, no. 7, pp. 766–777. DOI: 10.1134/S102319351206016X
  3. Zabolotsky, V.I., Novak, L., Kovalenko, A.V., Nikonenko, V.V., Urtenov, M.H., Lebedev, K.A. Electroconvection in systems with heterogeneous ion-exchange membranes. Mi>Petroleum Chemistry, September 2017, vol. 57, iss. 9, pp. 779–789.
  4. Rubinstein, I., Zaltzman, B., Pratts, I., Linder, K. Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane. Mi>Russ. J. Electrochem., 2002, vol. 38, iss. 8, pp. 853–863. https://doi.org/10.1023/A:101686171
  5. Zabolotskii, V.I., Loza, S.A., Sharafan, M.V. Physicochemical properties of profiled heterogeneous ion-exchange membranes. Mi>Russ. J. Electrochem., 2005, vol. 41, iss. 10, pp. 1053–1060. DOI: 10.1007/s11175-005-0180-2
  6. Pismenskaya, N.D., Nikonenko, V.V., Mel'nik, N.A., Pourcelli, G., Larchet, G. Effect of the ion-exchange-membrane/solution interfacial characteristics on the mass transfer at severe current regimes. Mi>Russ. J. Electrochem., 2012, vol. 41, iss. 6, p. 610–628. DOI: 10.1134/S1023193512060092
  7. Nikonenko, V.V., Mareev, S.A., Pis'menskay, N.D., Uzdenov, A.M., Kovalenko, A.V., Urtenov, M.Kh., Pourcelly, G. Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (Review). Mi>Russian Journal of Electrochemistry, 2017, vol. 53, iss. 10, pp. 1122–1144. DOI: 0.1134/S1023193517090099
  8. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han J. Sistat, P., Pourcelly, G. Desalination at overlimiting currents: State-of-the-art and perspectives. Mi>Desalination, 2014, vol. 342, pp. 85–106. DOI: 10.1016/j.desal.2014.01.008
  9. Rubinstein, S.M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R., Mugele, F., Wessling, M. Direct observation of a nonequilibrium electro-osmotic instability. Mi>Phys. Rev. Lett., 2008, vol. 101. P. 236101. DOI: 10.1103/PhysRevLett.101.236101
  10. Vasilieva, V.I., Bitiutskaya, L.A., Zaychenko, N.A. Mikroskopicheskiy analiz morfologii poverkhnosti ionoobmennykh membran [Microscopic analysis of the surface morphology of ion-exchange membranes]. Mi>Sorbtsionnye i khromatograficheskie protsessy [Sorption and chromatographic processes], 2008, vol. 8, pp. 260–271. (In Russian)
  11. Urtenov M.Kh. Mi>Kraevye zadachi dlya sistem uravneniy Nernsta-Planka-Puassona (faktorizatsiya, dekompozitsiya, modeli, chislennyy analiz) [Boundary value problems for systems of Nernst-Planck-Poisson equations (factorization, decomposition, models, numerical analysis)]. Krasnodar, KubSU, 1998. 126 p.
  12. Babeshko V.A., Zabolotsky V.I., Korzhenko N.M., Seidov R.R., Urtenov M.Kh. Theory of stationary transfer of binary electrolyte in the Nernst layer. Mi>Doklady Akademii nauk [Reports of Russian Academy of Science], 1997, vol. 355, pp. 488. (In Russian)
  13. Zabolotskiy V.I., But A. Yu., Vasil'eva V.I., Akberova E.M., Melnikov S.S. Ion transport and electrochemical stability of strongly basic anion-exchange membranes under high current electrodialysis conditions. Mi>J. of Membrane Science, 2017, vol. 526, pp. 60–72. DOI: 10.1016/j.memsci.2016.12.028
  14. Zabolotsky V.I., Lebedev K.A., Urtenov M.Kh., Nikonenko V.V., Vasilenko P.A., Shapoahnik V.A., Vasilieva V.I. Matematicheskaya model' dlya opisaniya vol'tampernykh krivykh i chisel perenosa pri intensivnykh rezhimakh elektrodializa [Mathematical model for description of current-voltage curves and transfer numbers under intensive electrodialysis regimes]. Mi>Electrochemistry, 2013, vol. 49, no. 4, pp. 1–12. (In Russian)

Issue

Section

Physics

Pages

73-82

Submitted

2018-12-14

Published

2019-03-30

How to Cite

Zabolotsky V.I., Lebedev K.A., Vasilenko P.A., Kuzyakina M.V. Mathematical modeling of vortex structures during electroconvection in the electrodialyzer cell channel on model membranes with two conducting~sections. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 1, pp. 73-82. DOI: https://doi.org/10.31429/vestnik-16-1-73-82 (In Russian)