On the condition of existence of an equilibrium drop in a model that takes into account the elasticity of the intermediate layer

Authors

  • Shcherbakov M.E. Kuban State University, Krasnodar, Russian Federation

UDC

517.5

DOI:

https://doi.org/10.31429/vestnik-17-1-1-6-16

Abstract

In this paper, the 1st variation of the Willmore functional is calculated. Here the Willmore functional is defined as $$\| H \|_2^2=\sigma 2\pi \int\limits_0^L H^{2}y\mathrm{d}s $$

The variational problem for the function $\mathfrak{F}(S)$ is solved. Here $$\mathfrak{F}(S):= F(S)+\mu \| H \| _{2}^{2}(S)$$ $$F(S)=\sigma \Lambda (S)+l_{p}\sigma \Xi^\ast (S)-\beta\sigma S^{\ast}+\lambda \sigma V(S)+V(S)\Gamma \rho$$

It is proved that the extreme surface belongs to an admissible class of surfaces. We consider surfaces that are defined by curves that are graphs of functions of a variable y that lies on an axis perpendicular to the axis of rotation. We prove the existence of a generalized 4th order derivative for functions that define curves that generate an extremal surface. A condition for the existence of an equilibrium drop is derived in the model that takes into account not only the thickness of the intermediate layer, but also the elasticity energy of this layer. This condition is defined by the equation $$\mu {\cdot \Delta }_{S}H+2\mu \cdot H\left( H^{2}-K \right)+\sigma \left( 2H+l_{p}K \right)=\lambda +\frac{1}{\sigma }\Gamma \rho$$

Here $\Delta_{S}$ is the Laplace-Beltrami operator of the surface, $K$ – the Gaussian curvature and $H$ – the mean curvature of it respectively.

Keywords:

mean surface curvature, Gaussian surface curvature, surface tension, intermediate layer, Willmore functional, intermediate layer elasticity, equilibrium form, Union functional of Gaussian curvature, variational problem

Author Info

Mikhail E. Shcherbakov

преподаватель кафедры функционального анализа и алгебры Кубанского государственного университета

e-mail: latiner@mail.ru

References

  1. Ladyzhenskaya O.A., Ural'tseva N.N. Lineynye, kvazilineynye uravneniya ellipticheskogo tipa [Linear, quasilinear equations of elliptic type]. Nauka, Moscow, 1973. (In Russian)
  2. Gilbarg D., Trudinger N. Ellipticheskie differentsial'nye uravneniya s chastnymi proizvodnymi vtorogo poryadka [Second-order elliptic partial differential equations]. Nauka, Moscow, 1989. (In Russian)
  3. Klyachin A.A., Klyachin V.A., Grigoreva E.G. Visualization of Stability and Calculation of the Shape of the Equilibrium capillary surface. Scientific Visualization, 2016, vol. 8, iss. 2, pp. 37–52.
  4. Saranin V.A., Ivanov Yu.V. Ravnovesie zhidkostey i ego ustoychivost' [The balance of liquids and its stability]. Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2009. (In Russian)
  5. Maxwell J.C. Capillary Attraction. Encyclopedia Britanica, 9th Ed., Vol. 5, Samuel L. Hall.
  6. Shcherbakov M.E. O soyuznom funktsionale gaussovoy krivizny i ravnovesnykh formakh zhidkikh kapel' [On the union functional of Gaussian curvature and equilibrium forms of liquid droplets]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of the Scientific Centers of the Black Sea Economic Cooperation], 2019, no. 2, pp. 6–12. (In Russian)

Issue

Section

Mathematics

Pages

6-16

Submitted

2020-03-17

Published

2020-03-31

How to Cite

Shcherbakov M.E. On the condition of existence of an equilibrium drop in a model that takes into account the elasticity of the intermediate layer. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 1, pp. 6-16. DOI: https://doi.org/10.31429/vestnik-17-1-1-6-16 (In Russian)