Energy Streamlines and the Power Density Vector Accompanying Wave Excitation by a Piezoelectric Transducer in a Layered Phononic Crystal

Authors

  • Fomenko S.I. Kuban State University, Krasnodar, Российская Федерация
  • Golub M.V. Kuban State University, Krasnodar, Российская Федерация
  • Shpak A.N. Kuban State University, Krasnodar, Российская Федерация
  • Glinkova S.A. Kuban State University, Krasnodar, Российская Федерация

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-17-1-2-48-60

Abstract

The use of periodic composite structures has a great potential for improving sensors/actuators and self-adjusting optics, as well as for active vibration suppression and energy storage systems. At the same time, the employment of dielectric elastomers offers even greater possibilities since they provide tools for the active control of wave energy fluxes. The mathematical formulation of the problem considers more general state equations for piezoelectric bodies. Namely, the absence of symmetry in elastic and piezoelectric tensors is taken into account. The present study investigates the features of elastic wave excitation by a surface piezoelectric transducer (generally made of dielectric elastomer) in multi-layered periodic composites or so-called phononic crystals. A hybrid approach is used to solve the boundary value problem, which involves application of the spectral element method and the boundary integral equation method. Employing the energy streamlines and the power density vector, wave phenomena associated with the interaction of a piezoelectric transducer with a layered phononic crystal at frequencies belonging to four frequency ranges (band gaps, pass bands and the frequency ranges, in which only a quasi-transverse or quasi-longitudinal waves propagate without attenuation) are analyzed.

Keywords:

elastic waves, waveguide, dielectric elastomer, piezoelectric transducer, hybrid scheme, energy streamlines, Umov-Poynting vector

Acknowledgement

Работа выполнена при поддержке Российского фонда фундаментальных исследований и Администрации Краснодарского края (проект 19-41-230012).

Author Infos

Sergei I. Fomenko

канд. физ.-мат. наук, доцент кафедры прикладной математики Кубанского государственного университета

e-mail: sfom@yandex.ru

Mihail V. Golub

д-р физ.-мат. наук, ведущий научный сотрудник Института математики, механики и информатики Кубанского государственного университета

e-mail: m_golub@inbox.ru

Alisa N. Shpak

канд. физ.-мат. наук, младший научный сотрудник Института математики, механики и информатики Кубанского государственного университета

e-mail: alisashpak7@gmail.com

Sofia A. Glinkova

аспирант кафедры математических и компьютерных методов Кубанского государственного университета

e-mail: glinkvasfja@gmail.com

References

  1. Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Elsevier Academic Press, 2014.
  2. Matveenko, V.P., Kligman, E.P., Yurlov, M.A., Yurlova, N.A. Modelirovanie i optimizaciya dinamicheskih harakteristik smart-struktur s p'ezomaterialami [Modeling and optimization of dynamic characteristics of smart-structures with piezomaterials]. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2012, no. 1, pp. 75–85. (In Russian)
  3. Raghavan, A., Cesnik, C.E.S. Review of guided wave structural health monitoring. The Shock and Vibration Digest, 2007, vol. 39, no. 2, pp. 91–114.
  4. Alleyne, D.N., Cawley, P. The interaction of lamb waves with defects. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, vol. 1, pp. 381–397.
  5. Eremin, A.A., Glushkov, E.V., Glushkova, N.V., Lammering, R. Guided wave time-reversal imaging of macroscopic localized inhomogeneities in anisotropic composites. Structural Health Monitoring, 2019, vol. 18, iss. 5–6, pp. 1803–1819. DOI: 10.1177/1475921719830612
  6. Eremin, A.A., Golub, M.V., Glushkov, E.V., Glushkova, N.V. Identification of delamination based on the lamb wave scattering resonance frequencies. NDT & E International, 2019, vol. 103, pp. 145–153.
  7. Veselago, V.G. Volny v metamaterialah: ih rol' v sovremennoj fizike [Waves in metamaterials: their role in modern physics]. Uspekhi fizicheskih nauk [Advances in Physical Sciences], 2011, no. 11, pp. 1201–1205. (In Russian)
  8. Nikitov, S.A., Grigor'evskij, A.V., Grigor'evskij, V.I. Osobennosti rasprostraneniya poverhnostnyh akusticheskih voln v dvumernyh fononnyh kristallah na poverhnosti kristalla niobata litiya [Features of the propagation of surface acoustic waves in two-dimensional phonon crystals on the surface of a lithium niobate crystal]. Radiotekhnika i elektronika [Radio Engineering and Electronics], 2011, no. 7, pp. 876–888. (In Russian)
  9. Galich, P.I., Rudykh, S. Shear wave propagation and band gaps in finitely deformed dielectric elastomer laminates: Long wave estimates and exact solution. J. of Applied Mechanics, 2018, vol. 87, pp. 21–28.
  10. Li J., Slesarenko V., Galich P.I., Rudykh S. Oblique shear wave propagation in finitely deformed layeredcomposites. Mechanics Research Communications, 2018, vol. 87, pp. 21–28.
  11. Umov, N.A. Uravneniya dvizheniya energii v telah [The equations of motion of energy in bodies]. Tipogr. Ul'riha i SHul'ce, Odessa, 1874. (in Russian)
  12. Umov, N.A. Izbrannye sochineniya [Selected Works]. Gostekhizdat, Moscow, Leningrad, 1950. (In Russian)
  13. Kiselev, A.P. Potok energii uprugih voln [The flow of energy of elastic waves]. Zapiski nauchnogo seminara LOMI [Notes of the LOMI Scientific Seminar], 1979, no. 89, pp. 120–123. (In Russian)
  14. Glushkov, E.V. Raspredelenie energii poverhnostnogo istochnika v neodnorodnom poluprostranstve [Energy distribution of a surface source in an inhomogeneous half-space]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1983, no. 47, pp. 70–75. (In Russian)
  15. Lezhnev, V.G., Danilov, E.A. Zadachi ploskoj gidrodinamiki [Problems of flat hydrodynamics]. Kuban State University, Krasnodar, 2000. (In Russian)
  16. Lezhnev, A.V., Lezhnev, V.G. Metod bazisnyh potencialov v zadachah matematicheskoj fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)
  17. Lezhnev, V.G., Markovskij, A.N. Proekcionnye algoritmy vihrevyh {2D techenij v slozhnyh oblastyah [Projection Algorithms of Vortex {2D Flows in Complex Areas]. Tavricheskij vestnik informatiki i matematiki [Tauride J. of Informatics and Mathematics], 2015, no. 26, pp. 42–49. (In Russian)
  18. Golub, M.V., Shpak, A.N., Byute, I., Fritcen, K.P. Modelirovanie garmonicheskih kolebanij i opredelenie rezonansnyh chastot polosovogo p'ezoelektricheskogo aktuatora metodom konechnyh elementov vysokogo poryadka tochnosti [Modeling harmonic oscillations and determining the resonant frequencies of a strip piezoelectric actuator using the finite element method of high order of accuracy]. Vychislitel'naya mekhanika sploshnyh sred [Computational mechanics of continuous media], 2015, no. 4, pp. 397–407. (In Russian)
  19. Babeshko, V.A., Glushkov, E.V., Glushkova, N.V. Analiz volnovyh polej, vozbuzhdaemyh v uppugom stpatificipovannom poluppostpanstve, povephnostnymi istochnikami [Analysis of wave fields excited in elastic stratified half-space, surface sources]. Akusticheskij zhupnal [Acoustic J.], 1986, no. 3, pp. 366–371. (In Russian)
  20. Babeshko, V.A., Glushkov, E.V., Zinchenko, Zh.F. Dinamika neodnorodnyh linejno-uprugih sred [Dynamics of inhomogeneous linear elastic media]. Nauka, Moscow, 1989. (In Russian)
  21. Glushkov, E.V., Glushkova, N.V. Integral'nye preobrazovaniya i volnovye processy [Integral transformations and wave processes]. Kuban State University, Krasnodar, 2017. (In Russian)
  22. Golub, M.V., Shpak, A.N. Semi-analytical hybrid approach for the simulation of layered waveguide with a partially debonded piezoelectric structure. Applied Mathematical Modelling, 2019, vol. 65, pp. 234–255.
  23. Fomenko, S.I., Golub, M.V., Chen, A. In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals. J. of Sound and Vibration, 2019, vol. 439, pp. 219–240.
  24. Fomenko, S.I., Golub, M.V., Aleksandrov, A.A. Chislenno ustojchivyj metod opredeleniya volnovyh polej i zapreshchennyh zon v sloistyh fononnyh kristallah [A numerically stable method for determining wave fields and band gaps in layered phonon crystals]. Vychislitel'naya mekhanika sploshnyh sred [Computational mechanics of continuous media], 2017, no. 10, pp. 235–244. (In Russian)

Issue

Section

Mechanics

Pages

48-60

Submitted

2019-10-28

Published

2020-03-31

How to Cite

Fomenko S.I., Golub M.V., Shpak A.N., Glinkova S.A. Energy Streamlines and the Power Density Vector Accompanying Wave Excitation by a Piezoelectric Transducer in a Layered Phononic Crystal. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 1, pp. 48-60. DOI: https://doi.org/10.31429/vestnik-17-1-2-48-60 (In Russian)