Solution by the factorization method of a mixed boundary value problem of diffusion-convection-decay for a homogeneous layer based on the equations of turbulent diffusion

Authors

  • Syromyatnikov P.V. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
  • Krivosheeva M.A. Kuban State University, Krasnodar, Russian Federation
  • Lapina O.N. Kuban State University, Krasnodar, Russian Federation
  • Nikitin Yu.G. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-18-1-36-45

Abstract

Mixed boundary value problems of diffusion-convection-decay are of great interest to researchers, since they describe different physical processes most accurately in comparison with solutions of similar homogeneous problems. The investigated boundary value problems can have different physical interpretations. In this work, they are considered as processes of propagation of substances in a diffusion layer with different properties of reflection and absorption of impurities by the boundaries of the layer. The constructed mathematical model of a mixed stationary boundary value problem of diffusion-convection-decay for a homogeneous layer and numerical algorithms allow solving the problem with the Dirichlet and Neumann boundary conditions and conditions of the third kind (in their various combinations) with high accuracy. In a two-dimensional formulation, the mixed boundary value problem for the diffusion layer is reduced to the Wiener-Hopf integral equation. The integral equation is solved by the factorization method. A large number of numerical examples are presented. The influence of the solution to the integral equation most significantly affects the nature of the distribution of the substance in the near zone. The influence of boundary conditions is more global in nature. The developed model is applicable without fundamental changes for solving a mixed problem with a multilayer package of layers with different properties of each layer.

Keywords:

equations of turbulent diffusion, mixed stationary boundary value problem, Wiener-Hopf integral equation, factorization method

Acknowledgement

Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2021 г. (№ г.р. 01201354241) при частичной поддержке гранта РФФИ и администрации Краснодарского края (проект 19-41-230011 р_а).

Author Infos

Pavel V. Syromyatnikov

д-р физ.-мат. наук, ведущий научный сотрудник лаборатории математики и механики краснодарского отделения Южного научного центра РАН, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: syromyatnikov_pv@mail.ru

Margarita A. Krivosheeva

магистрант второго года обучения кафедры математического моделирования Кубанского государственного университета

e-mail: margarita.krivoscheeva@gmail.com

Olga N. Lapina

канд. физ.-мат. наук, доцент кафедры вычислительных технологий Кубанского государственного университета

e-mail: olga_ln@mail.ru

Yuri G. Nikitin

канд. физ.-мат. наук, доцент кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

e-mail: yug@fpm.kubsu.ru

References

  1. Samarov, Sh.Sh. Exact and approximate analytical methods for solving direct, contact and inverse problems of heat conduction. Abstract of thesis. Cand. phys.-mat. sciences. Dushanbe. 2004. (In Russian)
  2. Samarskiy, A.A., Vabishchevich, P.N. Numerical methods for solving inverse problems of mathematical physics. Moscow: LKI Publishing House, 2009. (In Russian)
  3. Hundsdorfer, W.H., Verwer, J.G. Numerical solution of time-dependent advection-diffusion reaction equations. Springer, Berlin, 2003.
  4. Beckman, I.N. Higher mathematics: the mathematical apparatus of diffusion. Yurayt Publishing House, Moscow, 2018. (in Russian)
  5. Dranikov, I.L. Anomalous diffusion in simple physical models. Abstract of thesis. Cand. phys.-mat. sciences. Moscow, 2007. (In Russian)
  6. Babeshko, V.A., Pavlova, A.V., Babeshko, O.M., Evdokimova, O.V. Mathematical modeling of environmental processes of the spread of pollutants. Krasnodar, Kuban State University, 2009. (In Russian)
  7. Babeshko, O.M. The method of factorization in the problem of the stress-strain state of lithospheric plates. Abstract of the thesis. doct. phys.-mat. sciences. Krasnodar, 2005. (In Russian)
  8. Zaretskaya, M.V. Influence of the Earth's internal activity on the stress-strain state of lithospheric plates. Abstract of the thesis. doct. phys.-mat. sciences. Krasnodar, 2010. (In Russian)
  9. Noble, B. Application of the Wiener-Hopf method for solving partial differential equations. Foreign Literature Pub., Moscow, 1962. (In Russian)
  10. Krivosheeva, M.A., Lapina, O.N., Nesterenko, A.G., Nikitin, Yu.G., Syromyatnikov, P.V. Analiticheskoe i chislennoe modelirovanie statsionarnoy kraevoy zadachi diffuzii-konvektsii-raspada dlya odnorodnogo sloya na osnove uravneniy turbulentnoy diffuzii [Analytical and numerical modeling of a stationary boundary-value problem of diffusion-convection-decay of the third kind for a homogeneous layer based on the equations of turbulent diffusion]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2020, vol. 17, no. 3, pp. 37–47. DOI: 10.31429/vestnik-17-3-37-47 (In Russian)
  11. Syromyatnikov, P.V. Matrichnyy metod postroeniya simvola funktsii Grina dlya statsionarnykh zadach turbulentnoy diffuzii v mnogosloynykh sredakh [Matrix method for constructing the symbol of the Green's function for stationary problems of turbulent diffusion in multilayer media]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2018, vol. 15, no. 3, pp. 62–71. DOI: 10.31429/vestnik-15-3-62-71 (In Russian)

Issue

Section

Mechanics

Pages

36-45

Submitted

2021-02-23

Published

2021-03-30

How to Cite

Syromyatnikov P.V., Krivosheeva M.A., Lapina O.N., Nikitin Yu.G. Solution by the factorization method of a mixed boundary value problem of diffusion-convection-decay for a homogeneous layer based on the equations of turbulent diffusion. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, vol. 18, no. 1, pp. 36-45. DOI: https://doi.org/10.31429/vestnik-18-1-36-45 (In Russian)