Nonlinear relation between current and voltage in nickel-doped lanthanum-strontium polycrystalline manganites
UDC
538.91+537.311.3DOI:
https://doi.org/10.31429/vestnik-19-1-75-81Abstract
Manganites of the La3+0.81+xSr2+0.19-xMn3+0.81-xMn4+0.19Ni2+xO2-3 system (x = 0.100; 0.125) were synthesized using traditional ceramic processing. The obtained samples have a rhombohedral structure, are ferromagnetic with Curie points of 216 and 181 K, respectively, and exhibit semiconductive type of conduction in the temperature range of 110–200 K. The sample with x = 0.125 has submicron crystallite sizes and higher resistance.
In manganite with nickel content of 0.100 f.e. at T = 112 K, N-shaped current-voltage (I-V) characteristic is observed. Manganite La0.935Sr0.065Mn0.875Ni0.125O3 has S-shaped I-V characteristic in the temperature range of 132–172 K. With a decrease in temperature, the differential conductivity on the upper branch of I-V characteristic decreases and becomes negative at 122 K. As a result, for the first time, current-voltage characteristic was detected with two sections of negative differential resistance of various types, on which dU < 0 at dI > 0 and dI < 0 at dU > 0.
Experimental data are explained by competing effects of local self-heating of the samples and changes in the parameters of zone structure with increasing voltage, taking into account the role of microinhomogeneities, the possibility of current channels occurrence and tunneling of charge carriers between regions with different densities of states. The study of regularities and mechanisms of I-V characteristic formation with coexisting sections of negative differential resistance of various types is important for understanding the nature of nonlinear phenomena in complex-substituted manganites as strongly correlated systems and for obtaining the required properties of these materials.
Keywords:
rhombohedral structure, Curie point, semiconductors, current-voltage characteristics of N- and S-type, two various sections of negative differential resistanceReferences
- Belich N., Udalova N., Semenova A., Petrov A., Fateev S., Tarasov A., Goodilin E. Perovskite puzzle for revolutionary functional materials. Front. Chem., 2020, vol. 8, p. 550625. DOI 10.3389/fchem.2020.550625
- Bebenin N.G., Zainullina R.I., Ustinov V.V. Colossal magnetoresistance manganites. Physics-Uspekhi, 2018, vol. 61, iss. 8, pp. 719–738. DOI 10.3367/UFNe.2017.07.038180
- Dagotto E. Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates. New J. of Phys., 2005, vol. 7 DOI 10.1088/1367-2630/7/1/067
- Guha A., Khare N., Raychaudhuri A.K., Rao C.N.R. Magnetic field resulting from nonlinear electrical transport in single crystals of charge-ordered Pr0.63Ca0.37MnO3. Phys. Rev. B, 2000, vol. 62, p. R11941(R). DOI 10.1103/PhysRevB.62.R11941
- Kamilov I.K., Aliev K.M., Ibragimov Kh.O., Abakarova N.S. N-shaped voltage-current characteristic and current oscillations in Sm1-xSrxMnO3 manganite. JETP Lett. 2003, vol. 78, pp. 485–487. DOI 10.1134/1.1637699
- Karpasyuk V.K., Badelin A.G., Smirnov A.M., Sorokin V.V., Evseeva A., Doyutova E., Shchepetkin A.A. N-type current-voltage characteristics of manganites. J. Phys. Conf. Ser., 2010, vol. 200, p. 052026. DOI 10.1088/1742-6596/200/5/052026
- Abdel-Latif I.A. Rare earth manganites and their applications. J. Phys., 2012, vol. 1, iss. 3, pp. 15–31.
- Koroleva L.I., Demin R.V., Kozlov A.V., Zashchirinskii D.M., Mukovskii Ya.M. Relation between giant volume magnetostriction, colossal magnetoresistance, and crystal lattice softening in manganites La1-xAyMnO3 (A = Ca, Ag, Ba, Sr). J. Exp. Theor. Phys., 2007, vol. 104, iss. 1, pp. 76–86.
- Karpasyuk V.K., Badelin A.G., Derzhavin I.M., Merkulov D.I. Systems of manganites with enhanced electromagnetic parameters. Inorg. Mater. Appl. Res., 2018, vol. 9, iss. 5, pp. 807–812. DOI 10.1134/S2075113318020132
- Koroleva L.I., Morozov A.S., Zhakina E.S., Batashev I.K., Balbashov A.M. A new method of increasing thermopower in doped manganites. Tech. Phys. Lett., 2016, vol. 42, pp. 652–655. DOI 10.1134/S1063785016060237
- Karpasyuk V., Smirnov A., Badelin A. Ceramic manganites with contacts of various metals in magnetic field sensors. World Appl. Sci. J., 2014, vol. 32, iss. 10, pp. 2028–2031. DOI 10.5829/idosi.wasj.2014.32.10.1295
- Volkov N.V. Spintronics: manganite-based magnetic tunnel structures. Physics-Uspekhi, 2012, vol. 55, iss. 3, pp. 250–269. DOI 10.3367/UFNe.0182.201203b.0263
- Wu X.D., Suzuki K., Cochrane J., Markovich V., Gorodetsky G. Effect of electrical current on magnetic and transport properties of single-crystalline La0.82Ca0.18MnO3. IEEE Trans. Magn., 2010, vol. 46, iss. 6, pp. 1705–1707. DOI 10.1109/TMAG.2010.2044755
- Fisher B., Genossar J., Patlagan L., Reisner G.M. Electric-field effects in resistive oxides: facts and artifacts. EPJ Web of Conf., 2013, vol. 40, p. 15009. DOI 10.1051/epjconf/20134015009
- Shaykhutdinov K.A., Popkov S.I., Balaev D.A., Semenov S.V., Bykov A.A., Dubrovskiy A.A., Sapronova N.V., Volkov N.V. Non-linear current–voltage characteristics of (La0.5Eu0.5)0.7Pb0.3MnO3 single crystals: Possible manifestation of the internal heating of chargecarriers. Phys. B: Condens. Matter., 2010, vol. 405, iss. 24, pp. 4961–4965. DOI 10.1016/j.physb.2010.09.043
- Tulina N.A., Uspenskaya L.S., Sirotkin V.V., Mukovskii Y.M., Shulyatev D.A. Intrinsic inhomogeneities and effects of resistive switching in doped manganites. Phys. C: Supercond. Appl., 2006, vol. 444, iss. 1–2, pp. 19–22. DOI 10.1016/j.physc.2006.05.081
- Povzner A.A., Volkov A.G. Influence of voltage on magnetization of ferromagnetic semiconductors with colossal magnetoresistance. J. Magn. Magn. Mater., 2017, vol. 432, pp. 466–471. DOI 10.1016/j.jmmm.2017.01.104
- Moshnyaga V., Gehrke K., Lebedev O.I., Sudheendra L., Belenchuk A., Raabe S., Shapoval O., Verbeeck J., Tendeloo G. Van, Samwer K. Electrical nonlinearity in colossal magnetoresistance manganite films: Relevance of correlated polarons. Phys. Rev. B, 2009, vol. 79, p. 134413. DOI 10.1103/PhysRevB.79.134413
- Kowalik M., Tokarz W., Kolodziejczyk A. Electronic Band Structures of La2/3Pb1/3Mn2/3(Fe,Co,Ni)1/3O3. Acta Phys. Pol. A, 2015, vol. 127, pp. 251–253. DOI 10.12693/APhysPolA.127.251
Downloads
Submitted
Published
How to Cite
Copyright (c) 2022 Badelin A.G., Bich G.V., Karpasyuk V.K., Shaposhnikov P.A., Estemirova S.Kh.
This work is licensed under a Creative Commons Attribution 4.0 International License.