About lithospheric plates made of multicomponent materials

Authors

  • Evdokimova O.V. Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Prospekt Chekhova, 41, Rostov-on-Don, 344006, Russian Federation ORCID 0000-0003-1283-3870
  • Babeshko O.M. Kuban State University, Stavropolskaya str., 149, Krasnodar, 350040, Russian Federation ORCID 0000-0003-1869-5413
  • Babeshko V.A. Kuban State University, Stavropolskaya str., 149, Krasnodar, 350040, Russian Federation ORCID 0000-0002-6663-6357
  • Telyatnikov I.S. Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Prospekt Chekhova, 41, Rostov-on-Don, Russian Federation ORCID 0000-0001-8500-2133
  • Khripkov D.A. Kuban State University, Stavropolskaya str., 149, Krasnodar, 350040, Russian Federation ORCID 0000-0002-2161-121X
  • Uafa G.N. Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Prospekt Chekhova, 41, Rostov-on-Don, Russian Federation
  • Mukhin A.S. Kuban State University, Stavropolskaya str., 149, Krasnodar, 350040, Russian Federation ORCID 0000-0001-8935-0151

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-19-1-65-69

Abstract

Earlier in the works of the authors, a series of models of lithospheric plates on deformable bases that interact with their ends, causing starting earthquakes was built. Kirchhoff plates were taken as lithospheric plates. The question of the behavior of lithospheric plates, simulated materials of other rheologies, in particular, multicomponent ones, were solved by considering models of the linear theory of elasticity. However, it was possible to consider only boundary value problems for anti-plane tasks. And only recently it has been possible to develop a universal modeling method that made it possible to present solutions of boundary value problems for multicomponent materials described by systems of partial differential equations in the form of decompositions for solutions of simpler boundary value problems. Thus, the advantage of the method is the possibility of avoiding the need to solve complex boundary value problems for systems of partial differential equations by replacing them with separate differential equations, among which the Helmholtz equations are the simplest. Namely, with the help of combinations of solutions of boundary value problems for this equation, it is possible to describe the behavior of complex solutions of multicomponent boundary value problems. In this paper, the derivation of integral equations arising in the boundary problem under consideration and the method of their solution with the prospect of their application in problems of multicomponent materials is given.

Keywords:

lithospheric plates, block elements, vector boundary value problems, integral equations

Acknowledgement

Some fragments of the work were carried out as part of the implementation of the State task for 2022 of Ministry of Education and Science of Russia (project FZEN-2020-0020), Southern Scientific Center of Russian Academy of Science (project 00-20-13) State Registration No. 122020100341-0, and with the support of the Russian Foundation for Basic Research grants (projects 19-41-230003, 19-41-230004, 19-48-230014).

Author Infos

Olga V. Evdokimova

д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

e-mail: evdokimova.olga@mail.ru

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, заведующий кафедрой математического моделирования Кубанского государственного университета, руководитель научных направлений математики и механики Южного научного центра РАН

e-mail: babeshko41@mail.ru

Ilya S. Telyatnikov

канд. физ.-мат. наук, научный сотрудник лаборатории математики и механики Южного научного центра РАН

e-mail: ilux_t@list.ru

Dmitry A. Khripkov

научный сотрудник Кубанского государственного университета

e-mail: vestnik@fpm.kubsu.ru

Galina N. Uafa

инженер-исследователь Южного научного центра РАН

e-mail: uafa70@mail.ru

Aleksey S. Mukhin

канд. физ.-мат. наук, старший научный сотрудник Кубанского государственного университета

e-mail: muhin@mail.kubsu.ru

References

  1. Reid N.F. The Mechanism of the Earthquake. The California Earthquake of April 18, 1906. Rep. of the State Investigation Commiss., vol. 2, pt. 1. Washington, 1910.
  2. Griffith A. The Phenomena of Rupture in Solids. Trans. R. Soc. London, 1920, vol. 221A, pp. 163–197.
  3. Lamb H. On the propagation of tremors over the surface of an elastic solid. Philos. Trans. Rou. Soc. London, Ser. A, 1904, vol. 203, iss. 359, pp. 1–42. DOI 10.1098/rsta.1904.0013
  4. Herglotz G. Über das Benndorfsche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen. Physikalische Zeitschrift, 1907, vol. 8, pp. 145–147.
  5. Nakano H. Notes on the nature of the forces which give rise to the earthquake motions. Seismol. Bull. Centr. Met. Obs. Japan, vol. 1, pp. 92–120.
  6. Love A. A treatise on the mathematical theory of elasticity. Cambridge, 1927.
  7. Honda H. The elastic waves generated from a spherical source. Science Rep. Tohoku Univ., Ser. 5, Geophys., 1959, vol. 11, pp. 178–183.
  8. Hodgson J. Nature of faulting in large earthquake. Bull Geol. Soc. America Bull., 1957, vol. 68, pp. 611–644.
  9. Костров Б.В. Механика очага тектонического землетрясения. Наука, Москва, 1975. [Kostrov B.V. Mekhanika ochaga tektonicheskogo zemletrasenia = Mechanics of the seismic center of the tectonically earthquake. Nauka, Moscow, 1975. (in Russian)]
  10. Gutenberg B., Richter C. Seismicity of the Earth and associated phenomena. Princeton Univ. Press, 1954.
  11. Gutenberg B., Richter C. Earthquake magnitude, intensity, energy and acceleration. Bull. Seismol. Soc. Am., 1956, vol. 46, iss. 1, pp. 105–145.
  12. Mitchell E., Fialko Y., Brown K. Temperature dependence of frictional healing of Westerly granite: Experimental observations and numerical Simulations. Geochemistry, Geophysics, Geosystems, 2013, vol. 14, pp. 567–582.
  13. Mitchell E., Fialko Y., Brown K. Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochemistry, Geophysics, Geosystems, 2015, vol. 16, pp. 4006–4020.
  14. Babeshko V.A., Evdokimova O.V., Babeshko O.M. The theory of the starting earthquake. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 1(2), pp. 37–80. DOI 10.31429/vestnik-13-1-2-37-80
  15. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the possibility of predicting some types of earthquake by a mechanical approach. Acta Mechanica, 2018, vol. 229, iss. 5, pp. 2163–2175. DOI 10.1007/s00707-017-2092-0
  16. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On a mechanical approach to the prediction of earthquakes during horizontal motion of litospheric plates. Acta Mechanica, 2018, vol. 229, pp. 4727–4739. DOI 10.1007/s00707-018-2255-7
  17. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента в разложении решений сложных граничных задач механики. Доклады Академии наук, 2020, т. 495, с. 34–38. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. The block element method in the expansion of solutions to complex boundary value problems in mechanics. Doklady Akademii nauk = Reports of the Academy of Sciences, 2020, vol. 495, p. 34–38. (in Russian)] DOI 10.31857/S2686740020060048
  18. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элементов и новый универсальный метод моделирования. Доклады Академии наук, 2021, т. 499, с. 21–26. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk = Reports of the Academy of Sciences, 2021, vol. 499, pp. 21–26. (in Russian)] DOI 10.31857/S2686740021040039
  19. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey = Dynamic mixed problems of elasticity theory for non-classical domains. Moscow, Nauka, 1979. (in Russian)]

Issue

Section

Mechanics

Pages

65-69

Submitted

2022-02-25

Published

2022-03-30

How to Cite

Evdokimova O.V., Babeshko O.M., Babeshko V.A., Telyatnikov I.S., Khripkov D.A., Uafa G.N., Mukhin A.S. About lithospheric plates made of multicomponent materials. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, vol. 19, no. 1, pp. 65-69. DOI: https://doi.org/10.31429/vestnik-19-1-65-69 (In Russian)