The Flamant problem for an orthotropic half-plane
UDC
531.39DOI:
https://doi.org/10.31429/vestnik-20-1-27-32Abstract
Modern mechanical engineering very often sets tasks for the calculation of thin-walled structures with mutually exclusive properties: on the one hand, the studied structures must combine high reliability and strength, and on the other, lightness and economy. For a successful combination of the above properties, it seems quite justified to use orthotropic materials and plastics in structures.
It is known that there are mathematical analogies that allow solving problems of strength, stability and vibrations to effectively use solutions for the same type of isotropic structures to predict the behavior of the same structures made of orthotropic material. The article demonstrates the possibility of using mathematical analogies and the integral Fourier transform to solve the Flamant problem for an orthotropic half-plane by reducing it to two isotropic problems.
The transformation of the equations of the plane problem of the theory of elasticity of an orthotropic body made it possible to lower the order of the equations. The transformed systems of equations differ only in signs, so the integration of equations can be carried out for one half-plane. Due to this, the amount of computational work has significantly decreased compared to the solution of the original system of equations.
Keywords:
mechanics, mathematical analogies, the Flamant problem, orthotropic plates, integral Fourier transformAcknowledgement
References
- Саченков, А.В., О сведении расчета ортотропных пластин и оболочек. В Исследования по теории пластин и оболочек, вып. 11. Казань: Изд-во КГУ, 1975, с. 180–185. [Sachenkov A.V. On the reduction of the calculation of orthotropic plates and shells. In Issledovaniya po teorii plastin i obolochek = Studies on the theory of plates and shells, 1975, iss. 11, pp. 180–185. (in Russian)]
- Тазюков, Ф.Х., Об одном способе расчета многосвязных ортотропных пластинок. В Исследования по теории пластин и оболочек, вып. 12. Казань: Изд-во КГУ, 1976. С. 261–265. [Tazyukov, F.H., On one method of calculating multi-connected orthotropic plates. In Issledovaniya po teorii plastin i obolochek = Studies on the theory of plates and shells, 1976, vol. 12, pp. 261–265. (in Russian)]
- Артюхин, Ю.П., Грибов, А.П., Решение задач нелинейного деформирования пластин и пологих оболочек методом граничных элементов. Казань, Фэн, 2002. [Artyukhin, Yu.P., Gribov, A.P., Solving problems of nonlinear deformation of plates and shallow shells by the boundary elements method. Kazan, Fen, 2002. (in Russian)]
- Грибов, А.П., Великанов, П.Г., Применение преобразования Фурье для получения фундаментального решения задачи изгиба ортотропной пластины. В Математическое моделирование и краевые задачи: Труды Всероссийской научной конференции, 2004, ч. 3, с. 67–71. [Gribov, A.P., Velikanov, P.G., Application of the Fourier transform to obtain a fundamental solution to the problem of orthotropic plate bending. In Mathematical modeling and boundary value problems: Proceedings of the All-Russian Scientific Conference, 2004, pt. 3, pp. 67–71. (in Russian)]
- Великанов, П.Г., Артюхин, Ю.П., Куканов, Н.И., Изгиб анизотропной пластины методом граничных элементов. Актуальные проблемы механики сплошных сред, 2020, с. 105–111. [Velikanov, P.G., Artyukhin, Yu.P., Kukanov, N.I., Anisotropic plate bending by the boundary elements method. Actual problems of continuum mechanics, 2020, pp. 105–111. (in Russian)]
- Оконечников, А.С., Тарлаковский, Д.В., Федотенков, Г.В., Обобщенные функции в механике деформируемого твердого тела. Основы теории. Москва, Изд-во МАИ, 2019. [Okonechnikov, A.S., Tarlakovsky, D.V., Fedotenkov G.V., Generalized functions in mechanics of a deformable solid. Fundamentals of theory. Moscow, Publishing House of MAI, 2019. (in Russian)]
- Новожилов, В.В., Теория упругости. Ленинград, Судпромгиз, 1958. [Novozhilov, V.V., Theory of elasticity. Leningrad, Sudpromgiz, 1958. (in Russian)]
- Локтева, Н.А., Тарлаковский, Д.В., Федотенков, Г.В., Плоские задачи теории упругости. Москва, Изд-во МАИ, 2011. [Lokteva, N.A., Tarlakovsky, D.V., Fedotenkov, G.V., Planar problems of elasticity theory. Moscow, Publishing House of MAI, 2011. (in Russian)]
- Леденев В.В., Однолько В.Г., Нгуен З.Х. Теоретические основы механики деформирования и разрушения. Тамбов, Изд-во ФГБОУ ВПО "ТГТУ", 2013. [Ledenev, V.V., Odnolko, V.G., Nguyen, Z.H., Theoretical foundations of deformation and fracture mechanics. Tambov, Publishing house of FGBOU VPO "TSTU", 2013. (in Russian)]
- Лехницкий, С.Г., Теория упругости анизотропного тела. Москва, Наука, 1977. [Lehnitsky, S.G., Theory of elasticity of an anisotropic body. Moscow, Nauka, 1977. (in Russian)]
Downloads
Submitted
Published
How to Cite
Copyright (c) 2023 Velikanov P.G., Artyukhin Yu.P.
This work is licensed under a Creative Commons Attribution 4.0 International License.