Modeling of refractive images during the propagation of~laser beams in optically inhomogeneous liquid media
UDC
535.31:51-7DOI:
https://doi.org/10.31429/vestnik-20-1-52-64Abstract
The analytical models for the propagation of wave beams in the presence of strong refraction in liquid media have been developed, applicable to both narrow and wide, including structured laser beams used for probing inhomogeneities with significant refractive index gradients. Laser diagnostics of water stratifications with significant refractive index gradients, as a rule, is based on solving the inverse problem of refraction of optical radiation, which requires the development of models for the propagation of probing beams in and out of the medium. The propagation of laser radiation in highly inhomogeneous liquid media is accompanied by a change in its characteristics: curvature of the ray trajectories, distortion of the beam shape, and the formation of caustics. In this case, it is advisable to carry out measurements based on probing the medium with structured laser radiation, which makes it possible to record not the change in intensity, but the relative displacement of the structural elements of the beam.
Image discretization at the physical level can be carried out based on the use of structured laser beams for probing, formed using diffractive optical elements (DOE). DOEs that focus laser radiation into thin lines or small regions of space are the most promising for use in diagnosing gradient inhomogeneities. The use of beams with such a structure significantly expands the possibilities of traditional laser gradient methods.
The wave field of a structured laser beam with a known wavelength which has passed through an optical inhomogeneity with a given change in the refractive index can be described based on the Kirchhoff integral or using the spectral approach. Beam propagation in an inhomogeneous medium is described by the Helmholtz equation, which under a number of assumptions can be reduced to a parabolic one and solved by numerical methods. An alternative is to use an approach that simultaneously uses the principles of geometric optics and the spectral method. The advantage of this approach is the possibility of obtaining an approximate solution in an analytical form that is the same for wide and narrow beams, which makes it possible to solve the inverse problem without using laborious computational methods.
Using the stationary phase method, an asymptotic representation is obtained for the wave field of structured laser beams passing through an optically inhomogeneous medium, which is valid in the region of caustics and in the region of multirays. On the basis of experimental refractive images and the developed wave models, the reconstruction of the spatial and temporal characteristics of thermophysical and wave processes in liquid, including those accompanied by an abrupt perturbation of its parameters, can be carried out. The use of wave models in this case is fundamental for describing the position of the caustics and the significant spreading of the structural elements of the beam.
Keywords:
optically inhomogeneous liquid media, laser beams, refraction, mathematical models of propagation of optical radiation, laser diagnostics of liquid mediaAcknowledgement
References
- Базылев, Н.Б., Фомин Н.А., Количественная визуализация течений, основанная на спекл-технологиях. Беларус. навука, Минск, 2016. [Bazylev, N.B., Fomin, N.A., Kolichestvennaya vizualizatsiya techeniy, osnovannaya na spekl-tekhnologiyakh = Quantitative visualization of flows based on speckle technologies. Belaruskaya Navuka, Minsk, 2016. (in Russian)]
- Дубнищев, Ю.Н., Белоусов, П.П., Белоусов, П.Я., Арбузов, В.А., Оптические методы исследования потоков. Сибирское университетское издательство, Новосибирск, 2003. [Dubnishchev, Yu.N., Belousov, P.P., Belousov, P.Ya., Arbuzov, V.A., Opticheskie metody issledovaniya potokov = Optical methods of flow investigation. Siberian University Publishing House, Novosibirsk, 2003. (in Russian)]
- Левин, И.М., Перспективные направления развития оптических дистанционных методов исследования океана. В сб. Фундаментальная и прикладная гидрофизика, № 1, 2008, с. 14–47. [Levin, I.M., Promising Directions for the Development of Optical Remote Techniques for Ocean Research. In: Fundamentalnaya i prikladnaya gidrofizika = Fundamental and applied hydrophysics, no. 1, 2008, pp. 14–47. (in Russian)] EDN: KNPJCF
- Долина, И.С., Родионов, М.А., Левин, И.М., Восстановление характеристик гидрофизических полей в море из результатов гидрооптических измерений. Морской вестник, 2010, № 4, c. 62–64. [Dolina, I.S., Rodionov, M.A., Levin, I.M., Reconstruction of the characteristics of hydrophysical fields in the sea from the results of hydrooptical measurements. Morskoy vestnik = Marine Bull., 2010, no. 4, pp. 62–64. (in Russian)] EDN: MXSISP
- Dolina, I.S., Dolin, L.S., Levin, I.M., Rodionov, V.A., Savel’ev, V.A., Inverse problems of lidar sensing of the ocean. Current research on remote sensing, laser probing and imagery in natural water. In: SPIE Proc., 2007, vol. 6615, pp. 66150C-1–66150C-10.
- Dolin, L.S., Levin, I.M., Underwater optics. In: The Optics Encyclopedia. Weinheim, Wiley-VCH Publ., 2004, vol. 5, pp. 3237–3271.
- Расковская, И.Л., Ринкевичюс, Б.С., Толкачев, А.В., Диагностика конвективных процессов в пограничном слое жидкости методом лазерной рефрактографии. Инженерно-физический журнал, 2010, т. 83, № 6, c. 1149–1156. [Raskovskaya, I.L., Rinkevichyus, B.S., Tolkachev, A.V., Diagnostics of convective processes in the boundary layer of a liquid by the laser-refractography method. Journal of Engineering Physics and Thermophysics, 2010, vol. 83, no. 6, pp. 1218–1226]. EDN: NXXWRL DOI: 10.1007/s10891-010-0444-x
- Znamenskaya, I., Koroteeva, E., Shagiyanova, A., Thermographic analysis of turbulent non-isothermal water boundary layer. J. of Flow Visualization and Image Processing, 2019, vol. 26, pp. 49–56. DOI: 10.1615/JFlowVisImageProc.2018018925
- Знаменская, И.А., Нерсесян, Д.А., Сысоев, Н.Н., Коротеева, Е.Ю., Ширшов, Я.Н., Оптические исследования динамики развития водяной струи высокого давления. Вестник Московского университета. Серия 3: Физика, астрономия, 2016, № 4, с. 68–75. EDN: XWTUUF [Znamenskaya, I.A., Nersesyan, D.A., Sysoev, N.N., Koroteeva, E.Yu., Shirshov, Ya.N., An optical study of high-pressure water-jet dynamics. Moscow University Physics Bulletin, 2016, vol. 71, iss. 4, pp. 405–412. DOI: 10.3103/S0027134916040184]
- Цеханович, А.И., Петросян, С.А., Цысарь, С.А., Сапожников, О.А., Шлирен-система для исследования структуры ультразвуковых полей в жидкости. Ученые записки физического факультета московского университета, 2020, № 5, с. 2050802-1–2050802-2. [Tsekhanovich, A.I., Petrosyan, S.A., Tsysar, S.A., Sapozhnikov, O.A., Schlieren setup for studying the structure of ultrasound fields in liquids. Memoirs of the Faculty of Physics, 2020, no. 5, pp. 2050802-1–2050802-2. (in Russian)] EDN: AXKHSR
- Крайский, А.В., Миронова, Т.В., Сравнение результатов рефрактометрических измерений в процессе диффузии, полученных корреляционным фоновым методом и методом голографической интерферометрии с нестационарной опорной волной. Квантовая электроника, 2015, т. 45, № 8, c. 759–764. EDN: UGUZPN [Kraiskii, A.V., Mironova, T.V., Comparison of the results of refractometric measurements in the process of diffusion, obtained by means of the backgroundoriented schlieren method and the holographic interferometry method. Quantum Electronics, 2015, vol. 45, iss. 8, pp. 759–764. DOI: 10.1070/QE2015v045n08ABEH015208]
- Chashechkin, Y.D., Mitkin, V.V., Experimental study of a fine structure of 2D waves and mixing past an obstacle in a continuously stratified fluid. Dynamics of Atmospheres and Oceans, 2001, vol. 34, pp. 165–187. DOI: 10.1016/S0377-0265(01)00066-5
- Осадчий, В.Ю., Левин, И.М., Савченко, В.В., Французов, О.Н., Лабораторно-модельная установка для исследования переноса излучения и изображения через взволнованную водную поверхность. Океанология, 2004, т. 44, № 1, с. 154–159. [Osadchy V.Yu., Levin I.M., Savchenko, V.V., Frantsuzov, O.N., A laboratory modeling facility for the study of radiation and image transfer through an agitated water surface. Oceanology, 2004, vol. 4, no. 1, pp. 143–147.] EDN: OWJSVP
- Moisy, F., Rabaud, M., Salsac, K., A synthetic Schlieren method for the measurement of the topography of a liquid interface. Experiments in Fluids, 2009, vol. 46, iss. 6, pp. 1021–1036. DOI: 10.1007/s00348-008-0608-z
- Dalziel, S., Carr, M., Sveen, J.K., Davies, P.A., Simultaneous synthetic schlieren and PIV measurements for internal solitary waves. Measurement Science and Technology, 2007, vol. 18, no. 3, pp. 533–547. DOI: 10.1088/0957-0233/18/3/001
- Лейкин, М.В., Молочников, Б.И., Морозов, В.Н., Шакарян, Э.С., Отражательная рефрактометрия. Ленинград, Машиностроение, 1983. [Leikin, M.V., Molochnikov, B.I., Morozov, V.N., Shakaryan, E.S., Otrazhatel'naya refraktometriya = Reflecting Refractometry. Leningrad, Mashinostroenie, 1983. (in Russian)]
- Settles, G.S., Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer, New York, 2001.
- Tropea, C., Yarin, A.L., Foss, J.F., Springer handbook of experimental fluid mechanics. Springer, Berlin, 2007.
- Белозеров, А.Ф., Оптические методы визуализации газовых потоков. Издательство Казанского гос. техн. ун-та, Казань, 2007. [Belozerov, A.F., Opticheskie metody vizualizatsii gazovyh potokov = Optical methods of visualization of gas flows. Izdatel’stvo Kazanskogo gos. tehn. un-ta, Kazan, 2007. (in Russian)]
- Васильев, Л.А., Теневые методы. Наука, Москва, 1968. [Vasil’ev, L.A., Tenevye metody = Shadow methods. Nauka, Moscow, 1968. (in Russian)]
- Meier, G.E., Computerized background-oriented schlieren. Experiments in Fluids, 2002, vol. 33, pp. 181–187. DOI: 10.1007/s00348-002-0450-7
- Venkatakrishnan, L., Meier, G.E., Density measurements using the background oriented Schlieren technique. Experiments in Fluids, 2004, vol. 37, pp. 237–247. DOI: 10.1007/s00348-004-0807-1
- Goldhahn, E., Seume, J., The background oriented Schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Experiments in Fluids, 2007, vol. 43, pp. 241–249. DOI: 10.1007/s00348-007-0331-1
- Расковская, И.Л., Ринкевичюс, Б.С., Толкачев, А.В., Лазерная рефрактография оптически неоднородных сред. Квантовая электроника, 2007, т. 37, № 12, c. 1176–1180. EDN: TTESSV [Raskovskaya, I.L., Rinkevichyus, B.S., Tolkachev, A.V., Laser refractography of optically inhomogeneous media. Kvantovaya elektronika = Quantum Electronics, 2007, vol. 37, no. 12, pp. 1176–1180. DOI: 10.1070/QE2007v037n12ABEH013554]
- Сойфер, В.А., Безус, Е.А., Быков, Д.А., Досколович, Л.Л., Ковалев, А.А., и др., Дифракционная оптика и нанофотоника. Москва, Физматлит, 2014. [Soifer, V.A., Bezus, E.A., Bykov, D.A., Doskolovich, L.L., Kovalev A.A., et al., Difraktsionnaya optika i nanofotonika = Diffraction optics and nanophotonics. Moscow, Fizmatlit, 2014. (in Russian)]
- Сойфер, В.А., Oптические преобразования. Издательство СГАУ, Самара, 2007. [Soifer, V.A., Opticheskie preobrazovaniya = Optical transformations. Izdatel’stvo SGAU, Samara, 2007. (in Russian)]
- O’Shea, D.C., Suleski, T.J., Kathman, A.D., Prather, D.W., Diffractive optics: design, fabrication, and test. SPIE Press, Bellingham, 2003.
- Гончарский, А.В., Попов, В.В., Степанов, В.В., Введение в компьютерную оптику. Издательство МГУ, Москва, 1991. [Goncharskiy, A.V., Popov, V.V., Stepanov, V.V., Vvedenie v komp’yuternuyu optiku. Izdatel’stvo MGU, Moscow, 1991. (in Russian)]
- Taghizadeh, M.R., Blair, P., Layet, B., Barton, I.M., Waddie, A.J., Ross, N., Design and fabrication of diffractive optical elements. Microelectronic Engineering, 1997, vol. 37, pp. 219–242. DOI: 10.1016/S0167-9317(97)00188-3
- Голуб, М.А., Казанский, Н.Л., Сисакян, И.Н., Сойфер, В.А., Харитонов, С.И., Дифракционный расчет оптического элемента, фокусирующего в кольцо. Автометрия, 1987, № 6, с. 8–15. [Golub, M.A., Kazanskiy, N.L., Sisakyan, I.N., Soifer, V.A., Kharitonov, S.I., Diffraction calculation for an optical element which focuses into a ring. Optoelectronics, Instrumentation and Data Processing, 1987, vol. 23, no. 6, pp. 7–14.] EDN: SYXXID
- Soifer, V.A., Korotkova, O., Khonina, S.N., Shchepakina, E.A., Vortex beams in turbulent media: review. Computer Optics, 2016, vol. 40, iss. 5, pp. 605–624. DOI: 10.18287/2412-6179-2016-40-5-605-624
- Виноградова, М.Б., Руденко, О.В., Сухоруков, А.П., Теория волн. Наука, Москва, 1979. [Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P., Teoriya voln = Theory of waves. Nauka, Moscow,1979. (in Russian)]
- Расковская, И.Л., Волновая модель рефракции лазерных пучков с дискретным изменением интенсивности в сечении и их применение для диагностики протяженных нестационарных фазовых объектов. Квантовая электроника, 2015, т. 45, № 8, c. 765–770. EDN: UGUZPX [Raskovskaya, I.L., A wave model of refraction of laser beams with a discrete change in intensity in their cross section and their application for diagnostics of extended nonstationary phase objects. Quantum Electronics, 2015, vol. 45, no. 8, pp. 765–770. DOI: 10.1070/QE2015v045n08ABEH015602]
- Расковская, И.Л., Распространение лазерного пучка в среде с акустической волной. Радиотехника и электроника, 2004, т. 49, № 11, c. 1382–1389. [Raskovskaya, I.L., Propagation of a laser beam through a medium in the presence of an acoustic wave. Radiotekhnika i elektronika = Radio engineering and electronics, 2004, vol. 49, no. 11, pp. 1382–1389. (in Russian)]
- Кравцов, Ю.А., Орлов, Ю.И., Геометрическая оптика неоднородных сред. Наука, Москва, 1980. [Kravtsov, Yu.A., Orlov, Yu.I., Geometricheskaya optika neodnorodnykh sred = Geometrical optics of inhomogeneous media. Nauka, Moscow, 1980. (in Russian)]
- Vedyashkina, A.V., Raskovskaya, I.L., Pavlov, I.N., Formation of caustics by refraction of structured laser radiation in the diffusive layer of liquid. In: PIERS Proc., Czech Republic, Prague, 2015, pp. 884–887.
Downloads
Submitted
Published
How to Cite
Copyright (c) 2023 Vedyashkina A.V., Pavlov I.N., Raskovskaya I.L.
This work is licensed under a Creative Commons Attribution 4.0 International License.