On one approach to experimental determination of bending stiffness of cantilevers
UDC
539.3, 539.4Abstract
A cantilever, a scanning spot, is an important part of the atomic-force microscope. Investigations of cantilever motion are usually based on the model of an elastic rod. At present time there is a tendency of the decrease of cantilevers dimensions with the increase of their resonance frequencies. Possibility of investigation of the nanosize cantilever motion by the methods of classical continual mechanics is not obvious. The work offers the method of experimental examination of the possibility of applying the rod theory to study the nanosize cantilever motion, as well as the method of experimental determination of bending stiffness of cantilevers.
Funding information
Работа выполнена при поддержке РФФИ (03-01-00721, 05-01-00094).
References
- Gibson C.T., Smith D.A., Roberts C.J. Calibration of silicon atomic force microskope cantilevers // Nanotechnology. 2005. Vol. 16. P. 234-238.
- Kizuka T. Direct atomistic observation of deformation in multiwalled carbon nanotubes // Phys. Rev. B. 1999. Vol. 59. No 7. P. 4646-4649.
- Ru C.Q. Effective bending stiffness of carbon nanotubes // Phys. Rev. B. 2000. Vol. 62. No 15. P. 9973-9976.
- Байдаровцев Ю.П., Савенков Г.Н., Тарасенко В.А. Метод определения прочностных характеристик ультратонких слоев // Высокомолекулярные соединения, серия А. 1999. Vol. 41. No 8. P. 1302-1307.
- Кривцов А.М., Морозов Н.Ф. Аномалии механических характеристик наноразмерных объектов // ДАН. 2001. Т. 381. №3. С. 825-827.
- Иванова Е.А., Кривцов А.М., Морозов Н.Ф. Особенности расчета изгибной жесткости нанокристаллов // ДАН. 2002. Т. 385. №4. С. 1-3.
- Работнов Ю.Н. Механика деформируемого твердого тела. М.: 1988. 712 с.
- Forward R.L. Wideband laser-interferometer gravitational-radiation experiment // Phys. Rev. D. 1978. Vol. 17. P. 379-390.
- Stepanov S.I. Adaptive interferometry: a new area of applications of photorefractive crystals // in International Trends in Optics, ed. by J.Goodman, Academic. 1991. P. 124-140.
- Stepanov S.I., Sokolov I.A. Adaptive interferometers using photorefractive crystals. IEEE Proc. of Second International Conference on Holographic Systems, Components and Applications, (Institution of Electrical Engineers, London, U.K., 1989) 1989. Vol. 311. P. 95-100.
- Stepanov S.I. Applications of photorefractive crystals // Reports on Progress in Physics. 1994. Vol. 57. P. 39-116.
- Petrov M.P., Sokolov I.A., Stepanov S.I., Trofimov G.S. Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors // J. Appl. Phys. 1990. Vol. 68. P. 2216-2225.
- Stepanov S. Photo-ElectroMotiveForce Effect in Semiconductors. Handbook of Advanced Electronic and Photonic Materials / ed. H.S.Nalwa. Academic Press, 2000. Vol. 2. P. 205-272.
- Marshall R.H., Sokolov I.A., Ning Y.N., Palmer A.W., Grattan K.T.V. Photoelectromotive force crystals for interferometric measurement of vibrational response // Meas. Sci. Technol. 1996. Vol. 7. P. 1683-1686.
- Sokolov I.A. Adaptive photodetectors: novel approach for vibration measurements // Measurement. 2000. Vol. 27. P. 13-19.
- Dewhurst R.J., Shan Q. Optical remote measurement of ultrasound // Meas. Sci. Technol. 1999. Vol. 10. P. R139-R168.
- Servagent N., Bosch T., Lescure M. A laser displacement sensor using the self-mixing effect for modal analysis and defect detection // IEEE Trans. on Instrum. and Meas. 1997. Vol. 46. P. 847.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2005 Иванова Е.А., Морозов Н.Ф., Соколов И.А.
This work is licensed under a Creative Commons Attribution 4.0 International License.