Determination of rational orbit of small spacecraft, designed for monitoring of space debris objects in GEO region

Authors

  • Agapov V.M. Central Research Institute of Machine Building (TsNIIMash), Korolev, Moscow Oblast, Russian Federation
  • Elkin K.S. Central Research Institute of Machine Building (TsNIIMash), Korolev, Moscow Region, Russian Federation
  • Emel’yanov V.A. Central Research Institute of Machine Building (TsNIIMash), Korolev, Moscow Region, Russian Federation
  • Merkushev Yu.K. Central Research Institute of Machine Building (TsNIIMash), Korolev, Moscow Region, Russian Federation
  • Ramaldanov R.P. Central Research Institute of Machine Building (TsNIIMash), Korolev, Moscow Region, Russian Federation
  • Usovik I.V. Central Research Institute of Machine Building (TsNIIMash), Korolev, Moscow Region, Russian Federation

UDC

520.6.07, 004.02, 629.78

Abstract

Despite the fact that a large number of space debris objects (SDOs) have been detected and registered from Earth by terrestrial telescopes, there is an area where their use is problematic or impossible due to the time of day or the rotation period of the SDO. This area should be controlled with the help of space telescopes (ST). The article deals with the problem of detecting fragments of space debris in near-earth space, populating the vicinity of the geostationary orbit. The determination of rational effectiveness parameters of the orbital formation design of a small spacecraft for observing SDOs will allow for selection of formations with high effectiveness parameters for solving the chosen problem. As parameters of effectiveness, a dimensional interval of positional measurements of geosynchronous SDOs, the time between consecutive observation sessions of SDOs, and the minimum size of a previously unknown SDO detection were chosen. Simulation modeling of the detection and orbit determination processes of previously unknown SDOs provides effectiveness parameters calculation for various variants of small-scale spacecraft orbital construction. Calculating the proposed parameters of the target effectiveness for various orbital formations makes it possible in the future to compare the obtained scientific result with other proposals for solving the problem of detecting geosynchronous SDOs productively. We have obtained high effectiveness parameters with one small spacecraft on circular equatorial orbits with altitudes of 13899 or 23623 km with the proposed method of surveying the celestial sphere.

Keywords:

space debris, optimal orbit, geostationary orbit, spacecraft, radiance, target effectiveness, simulation modeling

Author info

  • Vladimir M. Agapov

    канд. техн. наук, главный конструктор Автоматизированной системы предупреждения об опасных ситуациях в околоземном космическом пространстве (АСПОС ОКП) Центрального научно-исследовательского института машиностроения (ЦНИИмаш)

  • Konstantin S. Elkin

    канд. техн. наук, исполняющий обязанности начальника отделения Центрального научно-исследовательского института машиностроения (ЦНИИмаш)

  • Vladimir A. Emel’yanov

    д-р техн. наук, профессор, начальник сектора Центрального научно-исследовательского института машиностроения (ЦНИИмаш)

  • Yuriy K. Merkushev

    ведущий инженер Центрального научно-исследовательского института машиностроения (ЦНИИмаш)

  • Roman P. Ramaldanov

    аспирант, инженер 1 категории Центрального научно-исследовательского института машиностроения (ЦНИИмаш)

  • Igor V. Usovik

    канд. техн. наук, исполняющий обязанности начальника отдела Центрального научно-исследовательского института машиностроения (ЦНИИмаш)

References

  1. Valley M.T. et al. Small Space Object Imaging: LDRD Final Report // Sandia National Laboratories. 2009. P. 1-33.
  2. Bendish J., Hoffman J.P.., Libscher R. Detection of space debris by the use of space based optical sensors // ESA SD-01. 1993. P. 91-97.
  3. Космический мусор. Кн. 2. Предупреждение образования космического мусора / Под науч. ред. проф. Г.Г. Райкунова. М.: Физматгиз, 2014. 188 с. [Raykunov G.G. (ed.) Kosmicheskiy musor. Kn. 2. Preduprezhdenie obrazovaniya kosmicheskogo musora [Space debris. Book 2. Prevention of space debris formation]. Moscow, Fizmatgiz Pub., 2014, 188 p. (In Russian)]
  4. Емельянов В.А., Ёлкин К.С., Маслов В.В., Меркушев Ю.К. Эффективность контроля малых фрагментов КМ вблизи ГСО с помощью высокоорбитального КА наблюдения // Космонавтика и ракетостроение. 2014. № 5. С. 138-144. [Emel'yanov V.A., Elkin K.S., Maslov V.V., Merkushev Yu.K. Effektivnost' kontrolya malykh fragmentov KM vblizi GSO s pomoshch'yu vysokoorbital'nogo KA nablyudeniya [Efficiency of controlling small fragments of CM near GSO with the help of a high-orbit observing satellite]. Kosmonavtika i raketostroenie [Astronautics and rocket engineering], 2014, no. 5, pp. 138-144. (In Russian)]
  5. Bakut P.A. et al. Statistical synthesis of the optimal algorithm for detecting celestial objects observed in the optical band // J. of Communications Tech. and Electronics. 2009. Vol. 54. No. 8. P. 974-985.
  6. Класс Е.В., Поташов С.Ю., Шаховский В.В. Математическая модель оценки проницающей способности оптоэлектронных систем по обнаружению космического мусора, находящегося на околоземных орбитах // Труды МФТИ. 2010. Т. 2. № 3. С. 182-188. [Klass E.V., Potashov S.Yu., Shakhovskiy V.V. Matematicheskaya model' otsenki pronitsayushchey sposobnosti optoelektronnykh sistem po obnaruzheniyu kosmicheskogo musora, nakhodyashchegosya na okolozemnykh orbitakh [A mathematical model for assessing the permeability of optoelectronic systems for detecting space debris located in near-earth orbits]. Trudy MFTI [Proc. of MIPT], 2010, vol. 2, no. 3, pp. 182-188. (In Russian)]
  7. Емельянов В.А., Рамалданов Р.П., Успенский Г.Р. Метод дистанционного определения параметров ФКМ бортовой камерой ИК диапазона // Космонавтика и ракетостроение. 2015. № 5. С. 155-162. [Emel'yanov V.A., Ramaldanov R.P., Uspenskiy G.R. Metod distantsionnogo opredeleniya parametrov FKM bortovoy kameroy IK diapazona [A method for remote determination of the parameters of a ferromagnetic material by an onboard IR camera]. Kosmonavtika i raketostroenie [Cosmonautics and rocket engineering], 2015, no. 5, pp. 155-162. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

7-13

Section

Article

Dates

Submitted

October 17, 2017

Accepted

November 13, 2017

Published

December 29, 2017

How to Cite

[1]
Agapov, V.M., Elkin, K.S., Emel’yanov, V.A., Merkushev, Y.K., Ramaldanov, R.P., Usovik, I.V., Determination of rational orbit of small spacecraft, designed for monitoring of space debris objects in GEO region. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, № 4, pp. 7–13.

Similar Articles

1-10 of 178

You may also start an advanced similarity search for this article.