Research on the dynamics of beam structures

Authors

UDC

531.39

DOI:

https://doi.org/10.31429/vestnik-20-4-11-24

Abstract

The design of beam structures is an actual scientific task of the development of modern technology. It is often difficult to obtain exact solutions when studying natural and forced vibrations of beam structures within the framework of a continuous homogeneous medium model (continuum mechanics) with an infinite number of degrees of freedom. Therefore, in the article, the model of a beam structure is endowed with a finite number of degrees of freedom placed in the middle of the finite elements at the nodes (the mass of the finite elements is also placed there), which elastically interact with the finite elements of the model that do not have mass. It is assumed that the elements of beam structures work only for bending, which is fully justified by comparing the frequencies of its bending and longitudinal vibrations (the frequency of longitudinal vibrations is two orders of magnitude higher than the frequency of bending vibrations). The resolving system of differential equations of vibrations of beam structures, in which expressions for energies (potential, kinetic and Rayleigh) are written in quadratures, is obtained using Lagrange equations of the 2nd kind. In the article using Green's functions, stiffness, mass, malleability matrices, etc. several problems of free oscillations of beam structures were solved: a cantilever beam with a distributed mass and a tower-type structure (a television tower). The numerical results obtained in the article, when compared with exact solutions implemented using direct and indirect of boundary element methods, as well as with other little-known numerical solutions, with an increase in the number of degrees of freedom (the number of concentrated masses modeling the distributed mass of the beam), showed rapid convergence to exact solutions.

Keywords:

oscillation of beams, oscillation frequencies, Green's function, stiffness matrix, mass matrix, malleability matrix

Acknowledgement

The study did not have sponsorship.

Author Infos

Peter G. Velikanov

канд. физ.-мат. наук, доцент кафедры теоретической механики Казанского (Приволжского) федерального университета, доцент кафедры реактивных двигателей и энергетических установок Казанского национального исследовательского технического университета им. А.Н. Туполева — КАИ

e-mail: pvelikanov@mail.ru

Yuri P. Artyukhin

д-р физ.-мат. наук, профессор кафедры теоретической механики Казанского (Приволжского) федерального университета

e-mail: ArtukhinYP@mail.ru

References

  1. Хазов, П.А., Кожанов, Д.А., Анущенко, А.М., Сатанов, А.А., Динамика строительных конструкций при экстремальных природных воздействиях: колебания, прочность, ресурс. Н. Новгород, ННГАСУ, 2022. [Khazov, P.A., Kozhanov, D.A., Anishchenko, A.M., Saranov, A.A., Dinamika stroitel'nykh konstruktsiy pri ekstremal'nykh prirodnykh vozdeystviyakh: kolebaniya, prochnost', resurs = Dynamics of building structures under extreme natural influences: vibrations, strength, resource. Nizhniy Novgorod, NNGASU, 2022. (in Russian)]
  2. Мкртычев, О.В., Решетов, А.А., Сейсмические нагрузки при расчете зданий и сооружений. Москва, Изд-во АСВ, 2017. [Mkrtychev, O.V., Reshetov, A.A., Seysmicheskie nagruzki pri raschete zdaniy i sooruzheniy = Seismic loads in the calculation of buildings and structures. Moscow, Publishing House of the DIA, 2017. (in Russian)]
  3. Сюй, Пэйфу, Проектирование современных высотных зданий. Москва, Изд-во АСВ, 2008. [Xu, Peifu, Proektirovanie sovremennykh vysotnykh zdaniy = Design of modern high-rise buildings. Moscow, Publishing House of the DIA, 2008. (in Russian)]
  4. Шеин, А.И., Динамика и устойчивость сооружений. Обеспечение сейсмостойкости зданий и сооружений. Пенза, ПГУАС, 2015. [Shein, A.I., Dinamika i ustoychivost' sooruzheniy. Obespechenie seysmostoykosti zdaniy i sooruzheniy = Dynamics and stability of structures. Ensuring earthquake resistance of buildings and structures. Penza, PGUAS, 2015. (in Russian)]
  5. Гусев, А.Ф., Новоселова, М.В., Прикладная теория колебаний. Тверь, Тверской гос. техн. ун-т, 2017. [Gusev, A.F., Novoselova, M.V., Prikladnaya teoriya kolebaniy = Applied theory of oscillations. Tver, Tver State Technical University, 2017. (in Russian)]
  6. Артюхин, Ю.П., Грибов А.П., Решение задач нелинейного деформирования пластин и пологих оболочек методом граничных элементов. Казань, Фэн, 2002. [Artyukhin, Yu.P., Gribov, A.P., Reshenie zadach nelineynogo deformirovaniya plastin i pologikh obolochek metodom granichnykh elementov = Solving problems of nonlinear deformation of plates and flat shells by the method of boundary elements. Kazan, Fen, 2002. (in Russian)]
  7. Кацикаделис, Дж.Т., Граничные элементы: Теория и приложения. Москва, Изд-во Ассоциации строительных вузов, 2007. [Katsikadelis, J.T., Granichnye elementy: Teoriya i prilozheniya = Boundary elements: Theory and applications. Moscow, Publishing House of the Association of Construction Universities, 2007. (in Russian)]
  8. Великанов, П.Г., Артюхин, Ю.П., Куканов, Н.И., Изгиб анизотропной пластины методом граничных элементов. В: Актуальные проблемы механики сплошных сред. Казань: Изд-во Акад. наук РТ, 2020, с. 105–111. [Velikanov, P.G., Artyukhin, Yu.P., Kukanov, N.I., Bending of an anisotropic plate by the method of boundary elements. In: Aktual'nye problemy mekhaniki sploshnykh sred = Actual problems of continuum mechanics. Kazan, Publishing House of the Academy of Sciences of the Tatarstan Republic, 2020, pp. 105–111. (in Russian)]
  9. Великанов, П.Г., Артюхин, Ю.П., Исследования по динамике рамных конструкций. Геосистемы переходных зон, т. 7, № 2, 2023. с. 180–195. [Velikanov, P.G., Artyukhin, Yu.P., Research on the dynamics of frame structures. Geosistemy perekhodnykh zon = Geosystems of transition zones, vol. 7, no. 2, 2023. pp. 180-195. (in Russian)]
  10. Великанов, П.Г., Артюхин, Ю.П., Исследование по динамике многоэтажных зданий. Геосистемы переходных зон, 2023, т. 7, № 3, с. 304–315. [Velikanov, P.G., Artyukhin, Yu.P., Research on the dynamics of multi-storey buildings. Geosistemy perekhodnykh zon = Geosystems of transition zones, 2023, vol. 7, no. 3, pp. 304–315. (in Russian)]
  11. Харрис, С.М., Крид, Ч.И., Справочник по ударным нагрузкам. Ленинград, Судостроение, 1980. [Harris S.M., Creed C.I. Spravochnik po udarnym nagruzkam = Handbook of shock loads. Leningrad, Sudostroenie, 1980. (in Russian)]
  12. Бабаков, И.М., Теория колебаний. Москва, Гостехиздат, 1958. [Babakov, I.M., Teoriya kolebaniy = Theory of oscillations. Moscow, Gostekhizdat, 1958. (in Russian)]
  13. Стеклов, В.А., Основы теории интегрирования обыкновенных дифференциальных уравнений. Москва-Ленинград, Госиздат, 1927. [Steklov, V.A., Osnovy teorii integrirovaniya obyknovennykh differentsial'nykh uravneniy = Fundamentals of the integration theory of the ordinary differential equations. Moscow, Leningrad, Gosizdat, 1927. (in Russian)]
  14. Артюхин, Ю.П., Гурьянов, Н.Г., Котлярб Л.М., Система Математика 4.0 и ее приложения в механике. Казань, Казанское математическое общество, Изд-во КамПИ, 2002. [Artyukhin, Y.P., Guryanov, N.G., Kotlyar, L.M., Sistema Matematika 4.0 i ee prilozheniya v mekhanike = The Mathematics 4.0 system and its applications in mechanics. Kazan, Kazan Mathematical Society, Publishing House of CamPI, 2002. (in Russian)]
  15. Великанов, П.Г., Основы работы в системе Mathematiсa. Казань, Изд-во Казанского гос. техн. ун-та, 2010. [Velikanov, P.G., Osnovy raboty v sisteme Mathematisa = Fundamentals of work in the Mathematics system. Kazan, Publishing House of Kazan State Technical University, 2010. (in Russian)]
  16. Кузьмин, П.А., Малые колебания и устойчивость движения. Москва, Наука, 1973. [Kuzmin, P.A., Malye kolebaniya i ustoychivost' dvizheniya = Small oscillations and stability of motion. Moscow, Nauka, 1973. (in Russian)]
  17. Новацкий, В., Динамика сооружений. Москва, Госстройиздат, 1963. [Novatsky, V., Dinamika sooruzheniy = Dynamics of structures. Moscow, Gosstroizdat, 1963. (in Russian)]
  18. Тимошенко, С.П., Янг, Д.Х., Уивер, У., Колебания в инженерном деле. Москва, Машиностроение. 1985. [Timoshenko, S.P., Yang, D.H., Weaver, U., Kolebaniya v inzhenernom dele = Fluctuations in engineering. Moscow, Mashinostroenie, 1985. (in Russian)]
  19. Майзель, В.М., Справочное руководство по машиностроению. Т. 1 "Математика". Харьков, Киев, Гос. науч.-техн. изд-во, 1937. [Maisel, V.M., Spravochnoe rukovodstvo po mashinostroeniyu. T. 1 "Matematika" = Reference manual on mechanical engineering. Vol. 1 "Mathematics". Kharkiv, Kiev, State Scientific and Technical publishing house, 1937. (in Russian)]

Issue

Section

Mechanics

Pages

11-24

Submitted

2023-01-24

Published

2023-12-31

How to Cite

Velikanov P.G., Artyukhin Yu.P. Research on the dynamics of beam structures. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 4, pp. 11-24. DOI: https://doi.org/10.31429/vestnik-20-4-11-24 (In Russian)