The integral equation method in the theory of the layers with set of cavities and galleries

Authors

  • Evdokimova O.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

Abstract

A method of solution of boundary problem is developed for the integral equations’ systems arising in the difficulty of structural behavior evaluation of block structures which represent underground constructions containing multiple shaft tunnels. The same problem appears in the study of multilayer materials behavior. These materials have connections with parallel different-sized cavities of a large extent. The method is based on reduction of boundary problems to the integral equations’ systems with a kernel representing matrix-function of high order. The latter circumstance complicates the study and the solution of the initial boundary problem by methods of reducing it to the Fredholm’s combined equations of the second kind. A factorization method, which allows study the behavior of the solution characteristics more optimally, will be developed in order to investigate the combined equations. This can be achieved by designing of factorization approach to the analysis of higher-order matrix-functions. The approach makes it possible to construct the conditions of boundary problem’s solutions by using some kind of algorithm of successive approximations. The conditions describe both the behavior of contact voltages in the zones of jointing of partitions with multipart layers and the behavior of motions in the inter-partitions zones.

Keywords:

stress-strain state, drifts, deformable layers, Kirchhoff plates, block elements, integral and functional equations, boundary value problems

Acknowledgement

Отдельные фрагменты работы выполнены в рамках реализации Госзадания на 2017 г. проекты (9.8753.2017/БЧ), (0256-2014-0006), Программы президиума РАН 1-33П, проекты с (0256-2015-0088) по (0256-2015-0093), и при поддержке грантов РФФИ (15-01-01379, 15-08-01377, 16-41-230214, 16-41-230218, 16-48-230216, 17-08-00323).

Author Infos

Olga V. Evdokimova

д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

e-mail: evdokimova.olga@mail.ru

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, зав. кафедрой математического моделирования Кубанского государственного университета, директор Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета, заведующий лабораторией Южного федерального университета

e-mail: babeshko41@mail.ru

References

  1. Babeshko V.A., Evdokimova O.V., Babeshko O.M. K teorii vliyaniya global'nogo faktora na prochnost' sovokupnosti parallel'nykh soedineniy [About the theory of global factor influence on the strength of the connection of the set of layers]. Vychislitel'naya mekhanika sploshnykh sred [Computational Mechanics of Continuous Media], vol. 9, no. 4, pp. 412-419. (In Russian)
  2. Babeshko V.A., Babeshko O.M., Evdokimova O.V., Fedorenko A.G., Shestopalov V.L. K probleme pokrytiy s treshchinami v nanomaterialakh i seysmologii [On the problem of cracks in coatings with nanomaterials and seismology]. Mekhanika tverdogo tela [Mechanics of Solids], 2013, no. 5, pp. 39-45. (In Russian)
  3. Babeshko V.A., Evdokimova O.V., Babeshko O.M. K probleme fiziko-mekhanicheskogo predvestnika startovogo zemletryaseniya: mesto, vremya, intensivnost' [On the problem of physical and mechanical precursor starting earthquake: place, time, intensity]. Doklady Akademii nauk [Rep. Academy of Sciences], 2016, vol. 466, no. 6, pp. 664-669. (In Russian)
  4. Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey [Dynamic mixed problem in elasticity theory for nonclassical fields]. Moscow, Nauka Pub., 1979, 320 p. (In Russian)
  5. Vorovich I.I., Aleksandrov V.M., Babeshko V.A. Neklassicheskie smeshannye zadachi teorii uprugosti [Non-classical mixed problem in elasticity theory]. Moscow, Nauka Pub., 1974, 456 p. (In Russian)
  6. Babeshko V.A. Obobshchennyy metod faktorizatsii v prostranstvennykh dinamicheskikh smeshannykh zadachakh teorii uprugosti [Generalized factorization method in spatial dynamic mixed problems of elasticity theory]. Moscow, Nauka, 1984, 256 p. (In Russian)
  7. Barenblatt G.I., Khristianovich S.A. Ob obrushenii krovli pri gornykh vyrabotkakh [On the roof collapse at the mine workings]. Izvestiya AN SSSR. Otdelenie tekhnicheskikh nauk [Proc. of the USSR Academy of Sciences. Department of Technical Sciences], 1955, no. 11, pp. 73-82. (In Russian)
  8. Babeshko V.A., Evdokimova O.V., Babeshko O.M. O "virusnoy" teorii nekotorykh anomal'nykh prirodnykh yavleniy [On the "virus" theory of some abnormal natural phenomena]. Doklady Akademii nauk [Rep. Academy of Sciences], 2012, vol. 447, no. 1, pp. 33-37. (In Russian)

Issue

Section

Mechanics

Pages

30-39

Submitted

2017-12-06

Published

2017-12-25

How to Cite

Evdokimova O.V., Babeshko O.M., Babeshko V.A. The integral equation method in the theory of the layers with set of cavities and galleries. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 4, pp. 30-39. (In Russian)