Simulation of spatial perturbations of a two-layer elastic semibounded medium caused by an internal moving oscillating source

Authors

  • Syromyatnikov P.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation

UDC

539.3

Abstract

This paper is devoted to numerical modeling of spatial perturbations in semibounded two-layer elastic isotropic media. The vibrations of the media are caused by a moving oscillating internal or surface mechanical stress source. Three variants of an elastic isotropic medium were investigated: the first is a two-layer laminate with a rigidly fixed base, the second variant is a two-layer laminate with a mechanically free base, the third variant is a single-layer half-space. The surface source moves at a constant velocity along the surface of the body, the internal source moves in the interface plane. Homogeneous boundary value problems are considered in a moving coordinate system that is related to the source. The solution of the spatial problem is based on the use of integral Fourier transforms, the method of direct contour integration, the algorithms for constructing the symbol of the block Green matrix for the media under consideration. Due to its simplicity, the method of direct contour integration can be considered an engineering method. Nevertheless, this method can be successfully used for research purposes. Variants of motion are considered for zero and nonzero frequencies at a velocity that exceeds the velocity of transverse waves in a half-space. For a single-layer half-space, two solutions are compared, one solution is obtained for a surface source, another solution is obtained for an internal source that performs oscillations.

Keywords:

two-layer elastic medium, internal moving oscillating source, spatial medium perturbations, numerical integration

Acknowledgement

Работа выполнена при частичной поддержке гранта РФФИ и администрации Краснодарского края 16-48-230336 р_а, Госзадания на 2017 г. проект (0256-2014-0006), программы Президиума РАН 1-33P проекты (0256-2015-0088) по (0256-2015-0093) и программ Президиума Южного научного центра РАН.

Author Info

Pavel V. Syromyatnikov

канд. физ.–мат. наук, заведующий лабораторией прикладной математики и механики Южного научного центра РАН, Краснодарское отделение, доцент кафедры математического моделирования Кубанского государственного университета

e-mail: syromyatnikov_pv@mail.ru

References

  1. Chahour, Lefeuve-Mesgouez G., Mesgouez A., Safi B. Dynamic analysis of a multilayered poroviscoelastic ground under a moving harmonic load. In: Travaux du 23 Congrès Français de Mécanique, Lille, 28 Août au 1er Septembre 2017, 12 pp.
  2. Wang L., Zhang Y., Tjhen Lie S. Detection of damaged supports under railway track based on frequency shift. J. Sound Vib., 2017, vol. 392, pp. 142-153.
  3. Shi Li, Selvadurai A.P.S. Dynamic response of an infinite beam supported by a saturated poroelastic half-space and subjected to a concentrated load moving at a constant velocity. Int. J. Solids Struct., 2016, vol. 88-89, pp. 35-55.
  4. Lefeuve-Mesgouez G., Mesgouez A. Three-dimensional dynamic response of a porous multilayered ground under moving loads of various distributions. Adv. Eng Software, 2012, vol. 46, pp. 75-84.
  5. Okonechnikov A.S., Tarlakovskiy D.V., Fedotenkov G.V. Nestatsionarnoye dvizheniye normal'noy sosredotochennoy nagruzki vdol' granitsy uprugoy poluploskosti [Nonstationary motion of a normal concentrated load along the boundary of an elastic half-plane]. Proc. MAI, 2015, no. 82, available at: http://trudymai.ru/published.php?ID=58464 (access date 16.10.2017) (In Russian)
  6. Tosecký A. Wave propagation in homogeneous elastic half-space using the Dual Reciprocity Boundary Element Method. Diss. … Doctor Engineer. The Ruhr University Bochum, 2005, 129 pp.
  7. Kalinchuk V.V., Belyankova T.I. Dinamika poverhnosti neodnorodnih sred [The dynamics of the surface of inhomogeneous media]. Moscow, Fizmatlit Publ., 2009, 240 p. (In Russian)
  8. Belokon A.V., Nasedkin A.V. Vzaimodeistvie dvijushihsya shtampov s uprugimi i vyazkouprugimi telami [Interaction moving punches with elastic and viscoelastic bodies]. In: Mehhanika kontaktnih vzaimodeistvii [Contact mechanics]. Moscow, Fizmatlit Publ., 2001, 672 p. (In Russian)
  9. Syromyatnikov P.V. Modelirovanie vozmushenii poverhnosti uprugoi poluogranichennoi sredi, vizivaemih podvijnim oscilliruushim istochnikom [Simulation of surface disturbances elastic semi-infinite medium, caused by moving oscillating source]. Ecologicheskii vestnik nauchnih centrov Scernomorskogo economicheskogo sodrujestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2016, no. 4, pp. 82-91. (In Russian)
  10. Clouteaua D., Arnsta M., Al-Hussainia T.M., Degrandeb G. Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium. J. Sound and Vibration, 2005, vol. 283, pp. 173-199.
  11. D01AKF Subroutine. NAG Fortran Library. Available at: http://www.nag.co.uk/numeric/FL/FLdescription.asp (access date 16.10.2017).

Issue

Section

Mechanics

Pages

62-73

Submitted

2017-10-16

Published

2017-12-25

How to Cite

Syromyatnikov P.V. Simulation of spatial perturbations of a two-layer elastic semibounded medium caused by an internal moving oscillating source. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 4, pp. 62-73. (In Russian)