About the problems of creating four-junction solar cells with a matched crystal lattice

Authors

  • Bogatov N.M. Kuban State University, Krasnodar, Российская Федерация
  • Nesterenko I.I. Kuban State University, Krasnodar, Российская Федерация
  • Skachkov A.F. Kuban State University, Krasnodar, Российская Федерация

UDC

621.315.592:535.215

Abstract

The structure of a four-junction solar cell based on A3B5 compounds with a matched crystal lattice is developed. The processes for obtaining the required composition of the epitaxial layers of the emitter and the base of the fourth junctuon, which are consistent with the Ge, lattice parameter of the crystal lattice, are achieved, the necessary level of doping of the layers is achieved. The layers of the back side field and the tunnel diode are obtained between the third and fourth stages. All the waste layers are embedded in the basic epitaxial structure of a three-stage solar cell (SC). The light volt-ampere characteristics obtained for a four-stage solar cell were measured. The analysis of the obtained results is carried out, the potential advantages of a four-stage solar cell in front of a three-stage solar cell in terms of energy conversion efficiency and an increase in the lifetime of solar cells made of four-stage solar cells in outer space are considered.

Keywords:

semiconductors, solar cell, four-stage structure, epitaxy, heterojunction, tunnel diode, current-voltage characteristic

Author Infos

Nikolay M. Bogatov

д-р физ.-мат. наук, профессор, заведующий кафедрой физики и информационных систем Кубанского государственного университета, действительный член Академии инженерных наук РФ им. А.М. Прохорова

e-mail: bogatov@phys.kubsu.ru

Igor I. Nesterenko

аспирант кафедры физики и информационных систем Кубанского государственного университета

e-mail: nesterenkoi@saturn-kuban.ru

Aleksandr F. Skachkov

аспирант кафедры физики и информационных систем Кубанского государственного университета

e-mail: skachkov@saturn-kuban.ru

References

  1. Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Tendentsii i perspektivy razvitiya solnechnoy fotoenergetiki [Trends and prospects for the development of solar photovoltaics]. Fizika i tehnologii poluprovodnikov [Physics and technology of semiconductors], 2004, vol. 32, iss. 8, pp. 937-946. (In Russian)
  2. Vlasov A.S., Khvostikov V.P., Karlina L.B. Kontsentratornye fotoelektricheskie moduli so spektral'nym rasshchepleniem sveta s solnechnymi elementami na osnove struktur AlGaAs/GaAs/GaSb i GaInP/InGaAs(P) [Concentrator photoelectric modules with spectral splitting of light with solar cells based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) structures]. Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 2013, vol. 83, no. 7, pp. 106-110. (In Russian)
  3. Zhao X., Li D., Zhang T. et al. Short circuit current and efficiency improvement of SiGe solar cell in a GaAsP-SiGe dual junction solar cell on a Si substrate. Solar Energy Materials and Solar Cells, 2017, vol. .159, iss. 1, pp. 94-101.
  4. Mellor A., Hylton N.P., Maier S.A. et al. Interstitial light-trapping design for multi-junction solar cells. Solar Energy Materials and Solar Cells, 2017, vol. 159, iss. 1, pp. 219-226.
  5. Lunin L.S., Sysoev I.A., Chebotarev S.N. et al. Formirovanie kvantovykh tochek InAs na podlozhkakh GaAs metodom ionno-luchevogo osazhdeniya [Formation of InAs quantum dots on GaAs substrates by ion-beam deposition]. Nauka Yuga Rossii [Science of the South of Russia], 2010, vol. 6, no. 4, pp. 46-49. (In Russian)
  6. Ramiro I., Antolin E., Marti A. et al. Experimental demonstration of the effect of field damping layers in quantum-dot intermediate band solar cells. Solar Energy Materials and Solar Cells, 2015, vol. 140, iss. 9, pp. 299-305.
  7. Kwak G.Y., Lee S.H., Jang J.S. et al. Band engineering of a Si quantum dot solar cell by modification of B-doping profile. Solar Energy Materials and Solar Cells, 2017, vol. 159, iss. 1, pp. 80-85.
  8. Utrilla A.D., Reyes D.F., Llorens J.M. et al. GaAsSb capping layers for improved performance of InAs/GaAs quantum dot solar cells. Solar Energy Materials and Solar Cells, 2017, vol. 159, iss. 1, pp. 282-289.
  9. Boustanji H., Jaziri S., Lazzari Jean-Louis. Contribution of a single quantum dots layer in intermediate band solar cells: A capacitance analysis. Solar Energy Materials and Solar Cells, 2017, vol. 159, iss. 1, pp. 633-639.
  10. Untila G.G., Kost T.N., Chebotareva A.B. et al. Solnechnyy element iz kremniya n-tipa, dvustoronniy, kontsentratornyy [Solar cell of silicon of n-type, two-sided, concentrator]. Fizika i tehnika poluprovodnikov [Physics and technology of semiconductors], 2012, vol. 46. iss. 9, pp. 1217-1223. (In Russian)
  11. Mahadik D.B., Lakshmi R.V., Barshilia H.C. High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications. Solar Energy Materials and Solar Cells, 2015, vol. 140, iss. 9, pp. 61-68.
  12. Arustamyan D.A., Chebotarev S.N., Lunina M.L. et al. Zavisimost' kharakteristik solnechnykh elementov na osnove AlGaAs ot tolshchiny i urovnya legirovaniya bazy [Dependence of the characteristics of solar cells based on AlGaAs on the thickness and doping level of the base]. Vestnik Severo-Kavkazskogo federalnogo universiteta [Bull. of the North-Caucasian Federal University], 2016, vol. 55, no. 4, pp. 7-12. (In Russian)
  13. Foldyna M., Togonal A.S., Rusli et al. Optimization and optical characterization of vertical nanowire arrays for core-shell structure solar cells. Solar Energy Materials and Solar Cells, 2017, vol. 159, iss. 1, pp. 640-648.
  14. Gudovskikh A.S., Kaluzhniy N.A., Lantratov V.M. et al. Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows. Thin Solid Films, 2008, vol. 516, iss. 20, pp. 6739-6743.
  15. Chebotarev S.N., Pashchenko A.S., Lunina M.L. Modelirovanie zavisimostey funktsional'nykh kharakteristik kremnievykh solnechnykh elementov, poluchennykh metodom ionno-luchevogo osazhdeniya, ot tolshchiny i urovnya legirovaniya frontal'nogo sloya [Modeling of the dependences of the functional characteristics of silicon solar cells obtained by the ion-beam deposition method on the thickness and doping level of the frontal layer]. Nauka Yuga Rossii [Science of the South of Russia], 2011, vol. 7, no. 4, pp. 25-30. (In Russian)
  16. Chebotarev S.N., Pashchenko A.S., Lunin L.S. et al. Modelirovanie kremnievykh tonkoplenochnykh trekhkaskadnykh solnechnykh elementov α-Si:H/μC-Si:O/μC-Si:H [Modeling of silicon thin-film three-stage solar cells alpha-Si:H/μC-Si:O/μC-Si:H]. Nauka Yuga Rossii [Science of the South of Russia], 2013, vol. 9, no. 4, pp. 18-25. (In Russian)
  17. Musalinov S.B., Bychkov I.V., Anzulevich A.P. et al. Modelirovanie dvukh i trekhsloynykh prosvetlyayushchikh pokrytiy dlya geterostrukturnykh solnechnykh elementov [Simulation of two and three-layer antireflection coatings for heterostructural solar cells]. Vestnik Chelyabinskogo gosudarstvennogo universiteta [Bull. of the Chelyabinsk State University], 2015, no. 7, pp. 60-63. In Russian)
  18. Bogatov N.M. Raspredelenie zaryada v rezkom nesimmetrichnom ravnovesnom n-p-perekhode [Charge distribution in a sharp asymmetric equilibrium n-p-transition]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2016, no. 3, pp. 12-17. (In Russian)
  19. Bogatov N.M., Korneev A.I., Matveyakin M.P. et al. Vliyanie neravnovesnogo zaryada granitsy SiO2-Si na nestatsionarnost' spektral'noy kharakteristiki solnechnykh elementov s submikronnym p-n-perekhodom [Influence of the nonequilibrium charge of the SiO2-Si interface on the nonstationary nature of the spectral characteristics of solar cells with a submicron p-n junction]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2006, no. 4, pp. 63-67. (In Russian)
  20. Bogatov N.M., Matveyakin M.P., Pershin N.V. et al. Opredelenie vremeni zakhvata neravnovesnogo poverkhnostnogo zaryada v poluprovodnikovykh strukturakh po spadu fotoeds [Determination of the time for the capture of a nonequilibrium surface charge in semiconductor structures from the decay of a photo-emf]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation]. 2008. № 2. P. 57-61.
  21. Bogatov N.M., Matveyakin M.P., Pershin N.V. et al. Determination of the capture time of a nonequilibrium surface charge in semiconductor structures from the drop in the short-circuit current. Izvestiya vysshih uchebnyh zavedeniy.Severo-Kavkazskiy region. Estestvennie nauki, 2008, no. 6, pp. 39-41.
  22. Kuhnapfel S., Gall S., Rech B. et al. Towards monocrystalline silicon thin films grown on glass by liquid phase crystallization. Solar Energy Materials and Solar Cells, 2015, vol. 140, iss. 9, pp. 86-91.
  23. Dupre O., Vaillon R., Green M.A. Physics of the temperature coefficients of solar cells. Solar Energy Materials and Solar Cells, 2015, vol. 140, iss. 9, pp. 92-100.
  24. Boucher J.W., Greenaway A.L., Egelhofer K.E. et al. Analysis of performance-limiting defects in pn junction GaAs solar cells grown by water-mediated close-spaced vapor transport epitaxy. Solar Energy Materials and Solar Cells, 2017, vol. 159, iss. 1, pp. 546-552.
  25. Chebotarev S.N., Lunina M.L., Alfimova D.L. Nanostrukturyg AIVBIV i AIIIBIII dlya ustroystv optoelektroniki [AIVBIV and AIIIBIII nanostructures for optoelectronic devices], Rostov-on-Don, UNCh RAN, 2014, 275 p. (In Russian)
  26. Patel P., Aiken D., Chumney D. et al. Initial results of the monolithically grown six-junction inverted metamorphic multi-junctionsolar cell. 38th IEEE Photovoltaic Specialist Conference (PVSC), 2012, pp. 1-4.
  27. Cornfeld A., Patel P., Spann J. et al. Evolution of a 2.05eV AlGaInP top sub-cell for 5 and 6J-IMM applications. 38th IEEE Photovoltaic Specialist Conference (PVSC), 2012, pp. 88-91.
  28. Guter W., Kern R., Kostler W. et al. III-V Multi-junction Solar Cells - New lattice matched products and development of upright metamorphic 3J solar cells. 7th Int. Conf. on Concentrating Photovoltaic Systems, 2011, pp. 5-8.
  29. Sasaki K., Agui T., Nakaido K. et al. Development of \mbox{InGaP}/GaAs/InGaAs inverted triple junction concentrator solar cells. 9th Int. Conf. on Concentrating Photovoltaic Systems, 2013, pp. 22-25.
  30. Philipps S., Guter W., Welser E. et al. Present status in the development of III-V multi-junction solar cells. In: Next Generation of Photovoltaics, Luxembourg, Springer Verlag, 2012, pp. 1-22.
  31. Ilyushin V.A., Velichko A.A. Protsessy nanotekhnologii [Processes of nanotechnology]. Novosibirsk, NSTU, 2004, 106 p. (In Russian)
  32. Baur C., Meusel M., Dimroth F. et al. Analysis of the radiation hardness of triple- and quintuple-junction solar cells. 31st IEEE Photovoltaic Specialist Conference (PVSC), 2005, pp. 548-551.

Issue

Section

Physics

Pages

74-80

Submitted

2017-09-16

Published

2017-12-25

How to Cite

Bogatov N.M., Nesterenko I.I., Skachkov A.F. About the problems of creating four-junction solar cells with a matched crystal lattice. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 4, pp. 74-80. (In Russian)