Energy levels and wave functions of negatively charged trion, captured by quantum dot

Authors

  • Andreeva A.R. Kuban State Univesity, Krasnodar, Russian Federation
  • Tumayev E.N. Kuban State Univesity, Krasnodar, Russian Federation
  • Rudoman N.R. Kuban State Univesity, Krasnodar, Russian Federation

UDC

538.915

DOI:

https://doi.org/10.31429/vestnik-16-4-43-49

Abstract

The article considers a system of three quasiparticles of electron-hole plasma of semiconductors localized in the vicinity of a quantum dot in a two-dimensional heterostructure - a negatively charged trion. Neutral quantum dot is described by an oscillator potential. As an additional factor, the magnetic field is taken into account that influences on the semiconductor heterostructure, the intensity vector of which is perpendicular to the hetero layer. The Hamiltonian is drawn up to describe the trion including Coulomb interaction between electrons and a hole which are considered as perturbation in the offered approach. The Hartree-Fock approximation is used to calculate the matrix elements of the Coulomb interaction potential of quasiparticles. The correction to the energy of the ground state of trion is calculated when the electrons included in its composition are in the singlet or triplet state. The method for calculating the bonding energy for the excited state of the trion is specified. It is noted that the approach developed in this article is not applicable for charged quantum dots and, in particular, for impurity ions.

Keywords:

electron, hole, quantum dot, oscillator potential, Coulomb interaction, perturbation theory, Hartree-Fock method

Author Infos

Alina R. Andreeva

студентка физико-технического факультета Кубанского государственного университета

e-mail: alina.and@yandex.ru

Evgeniy N. Tumayev

д-р физ.-мат. наук, доцент, профессор кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

e-mail: tumayev@phys.kubsu.ru

Nelli R. Rudoman

старший преподаватель кафедры оптоэлектроники Кубанского государственного университета

e-mail: rudnel@rambler.ru

References

  1. Tkach, N.V., Makhanets, A.M., Zegrya, G.G. Electrons, holes, and excitons in a two-dimensional surerlattice of culindrical quantum dots. Semiconducors, 2002, vol. 36, iss. 5, pp. 543–549. (In Russian)
  2. Pokutnyi S.Y. Eksitonnye sostoyaniya iz prostranstvenno-razdelennykh elektrona i dyrki v poluprovodnikovykh kvantovykh tochkakh. Zhurnal tekhnicheskoj fiziki [Journal of Technical Psysics], 2015, vol. 85, iss. 11, pp. 44–47. (In Russian)
  3. Koch, S.W., Kira, M., Khitrova, G., Gibbs, H.M. Semiconductors excitons in new light. Nature materials, 2006, iss. 5, pp. 523–531.
  4. Monemar B., Lindefelt U., Chen W.M. Electronic structure of bound excitons in semiconductors. Physica B+C, 1987, vol. 146, iss. 1–2, pp. 256–285.
  5. Bezhenar, M.V., Kurgatchov, A.Y., Ligachov, D.V., Tumayev, E.N. Postroenie probnoy volnovoy funktsii X--triona v uderzhivayushchem potentsiale kvantovoy tochki v postoyannom magnitnom pole [Construction of the trial wave function of the X- trion in the retarding potential of a quantum dot in a constant magnetic field]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of Black Sea Economic Cooperation], 2018, vol. 15, no. 1, pp. 37–40.
  6. Kheng, K., Cox, R.T., d’Aubigne, Y.M., BassaniF., Saminadayar, K., Tatarenko, S. Observation of negatively charged excitons X- in semiconductor quantum wells. Phys. Rev. Lett. 1993, vol. 71, iss. 11, pp. 1752–1756.
  7. Sergeev, R.A., Suris R.A. nergiya osnovnogo sostoyaniya X- i X+-trionov v dvumernoy kvantovoy yame pri proizvol'nom sootnoshenii mass [The ground state energy of X and X+-trions in a two-dimensional quantum well at an arbitrary mass ratio]. Fizika tverdogo tela [Physics Of The Solid State], 2001, vol. 43, iss. 4, pp. 714–718. (In Russian)
  8. Lampert, M.A. Mobile and immobile effectivemass particle complexes in nonmetallic solids. Phys. Rev. Lett., 1958, vol. 1. iss. 12, pp. 450–453.
  9. Landau, L.D., Lifshitz, E.M. Teoreyicheskaya fizika. Kvantovaya mekhanika (nerelyativistskaya teoriya) [Theoretical physics. Quantum mechanics (nonrelativistic theory)]. Fizmatlit, Moscow, 2019. (In Russian)

Issue

Section

Physics

Pages

43-49

Submitted

2019-10-11

Published

2019-12-11

How to Cite

Andreeva A.R., Tumayev E.N., Rudoman N.R. Energy levels and wave functions of negatively charged trion, captured by quantum dot. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 4, pp. 43-49. DOI: https://doi.org/10.31429/vestnik-16-4-43-49 (In Russian)