Estimate of short-periodic perturbations in a problem of celestial mechanics
UDC
521.11Abstract
Let us consider the following problem of celestial mechanics. A zero-mass point moves under a gravitational acceleration $\mathbf P_0$ to a central body of finite mass, and a disturbing acceleration $\mathbf P$. The last vector is constant in an accompanying reference frame with axes directed along the radius, the transversal, and the angular momentum vector. Earlier this problem has been transformed using averaging method. In more exact terms a change of variables excluding short-periodic harmonics has been found (in the first approximation with respect to the ratio $|\mathbf P|/|\mathbf P_0|$). So the differences between osculating and mean elements were obtained explicitly, as well as the equations of motion in mean elements. A problem of evaluating the magnitude of short-periodic harmonics arises. It is not difficult to evaluate them for each element. But we need to do it in the coordinate space, not in the space of elements. Meanwhile the standard estimate of a coordinates increment via an elements increment is drastically rough. In the present paper we succeed to obtain an exact estimate using Euclidean (mean-squared) norm of a variance. For this a relatively simple expression for the squared variance of the radius-vector via variances of elements was firstly derived. It was applied to estimate the norm $\|mathrm{d}\mathbf{r}\|$ (difference of position vectors on the osculating and mean orbit) in the above problem. It turns out that $\|mathrm{d}\mathbf r\|^2$ is a weighted sum of squared components of $\mathbf P$, and the corresponding coefficients depend on semi-major axis and eccentricity of the mean orbit only. The results are applied to the two real problems on the motion of sputniks, and of asteroids.
Keywords:
Euclidean (mean-squared) norm of a variance, osculating orbit, disturbing acceleration, short-periodic perturbationsFunding information
Работа выполнена при поддержке Программы проведения фундаментальных исследований СПбГУ по приоритетным направлениям (грант 6.37.341.2015).
References
- Санникова Т.Н., Холшевников К.В., Чечеткин В.М. Применение метода осреднения Гаусса к анализу возможности увода небесного тела с помощью малой тяги // Экологический вестник научных центров черноморского экономического сотрудничества. 2013. № 2. Т. 4. С. 144-147. [Sannikova T.N., Kholshevnikov K.V., Chechetkin V.M. Primenenie metoda osredneniya Gaussa k analizu vozmozhnosti uvoda nebesnogo tela s pomoshch'yu maloy tyagi [Application of Gauss averaging method to the analysis of the possibility of a celestial body deviation using a microthrust]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2013, no. 4, iss. 2, pp. 144-147. (In Russian)]
- Санникова Т.Н. Осредненные уравнения движения в центральном поле при постоянном по модулю возмущающем ускорении // Вестн. С.-Петерб. ун-та. 2014. Сер. 1. Т. 59. Вып. 1. C. 171-179. [Sannikova T.N. Osrednennye uravneniya dvizheniya v tsentral'nom pole pri postoyannom po modulyu vozmushchayushchem uskorenii [Averaged equations of motion in a central field in the presence of a constant in absolute value disturbing acceleration]. Vestnik S.-Peterburgskogo universiteta [Bulletin of St.-Petersburg University], 2014, ser. 1, vol. 59, iss. 1, pp. 171-179. (In Russian)]
- Санникова Т.Н., Холшевников К.В. Осредненные уравнения движения при постоянном в различных системах отсчета возмущающем ускорении // Астрон. журн. 2014. Т. 91, № 12. С. 1060-1068. [Sannikova T.N., Kholshevnikov K.V. Averaged equations of motion for a perturbing acceleration which is constant in various reference frames. Astronomy Reports, 2014, vol. 58, no. 12, pp. 945-953. (In Russian)]
- Батмунх Н., Санникова Т.Н., Холшевников К.В., Шайдулин В.Ш. Норма смещения положения небесного тела при вариации его орбиты // Астрон. журн. 2016. Т. 93, № 3. С. 331-338. [Batmunkh N., Sannikova T.N., Kholshevnikov K.V., Shaidulin V.Sh. The norm of the position shift of a celestial body upon variation of its orbit. Astronomy Reports, 2016, vol. 60, iss. 3, pp. 366-373.]
- Холшевников К. В. Асимптотические методы небесной механики. Л.: Изд-во ЛГУ, 1985. 208 с. [Kholshevnikov K.V. Asimptoticheskie metody nebesnoy mekhaniki [Asymptotic methods of celestial mechanics]. Leningrad, Leningrad University Publ., 1985, 208 p. (In Russian)]
- Субботин М.Ф. Введение в теоретическую астрономию. М.: Наука, 1968. 800 с. [Subbotin M.F. Vvedenie v teoreticheskuyu astronomiyu [Introduction to theoretical astronomy]. Moscow, Nauka Publ., 1968, 800 p. (In Russian)]
- Холшевников К.В., Титов В.Б. Задача двух тел. СПб.: Изд. СПбГУ, 2007. 180 с. [Kholshevnikov K.V., Titov V.B. Two Body Problem. St.Petersburg, St.Petersburg University Publ., 2007, 180 p. (In Russian)]
- Jet Propulsion Laboratory - CNEOS (Center of Near Earth Object Studies): Impact Risk Data. Режим доступа: http://neo.jpl.nasa.gov/risk/ (дата обращения 20 октября 2017 г.)
- Лисов И. Новая "Молния" красноярцев // Новости космонавтики. 2001. № 9. С. 38-40. [Lisov I. Novaya "Molniya" krasnoyartsev [New "Lightning" Krasnoyarsk residents]. Novosti kosmonavtiki [News of cosmonautics], 2001, no. 9, pp. 38-40. (In Russian)]
- Крылов А., Крейденко К. Производство и эксплуатация спутников связи и вещания. 2014, 1 июня // Вестник ГЛОНАСС. Режим доступа: http://vestnik-glonass.ru/stati/proizvodstvo_ i_ekspluatatsiya_sputnikov_svyazi_i_ veshchaniya/?sphrase_id=10153 (дата обращения 20 октября 2017 г.) [Krylov A., Kreydenko K. Proizvodstvo i ekspluatatsiya sputnikov svyazi i veshchaniya. Vestnik GLONASS [GLONASS Bulletin], 2014, 1 june. Available at: http://vestnik-glonass.ru/ stati/proizvodstvo_i_ekspluatatsiya_sputnikov _svyazi_i_veshchaniya/?sphrase_id=10153 (accessed date 20.04.2017). (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2017 Батмунх Н.
This work is licensed under a Creative Commons Attribution 4.0 International License.