The determination of preliminary orbit from two series of observations by the continuation method with optimal parametrization

Authors

  • Kuznetsov V.B. Institute of Applied Astronomy, Russian Academy of Science, St. Petersburg, Russian Federation

UDC

521.3

Abstract

The method of determination of preliminary orbit by the angle topocentric coordinates and their velocities of observed body in two instants of time is considered. The main equation of the method is based on the integral of areas and integral of the energy of the two-body problem. For its solving the continuation method with optimal parametrization is proposed. This method does not require the polynomial form of solved equation. The problem is reduced to solving the Cauchy problem for two ordinary differential equations (ODE) with initial conditions what does not depends on data of original equation. The arc calculated along the solution curve is the optimal continuation parameter for this solution. The such parametrization is the best for the continuation method. In this way, all possible solutions are obtained. As example, the determination of the orbit of asteroid (1685) Toro is presented.

Keywords:

preliminary orbit, two-body integrals, continuation method with optimal parametrization

Author Info

Vladimir B. Kuznetsov

канд. физ.-мат. наук, научный сотрудник лаборатории малых тел солнечной системы Института прикладной астрономии РАН

e-mail: vb.kuznetsov@iaaras.ru

References

  1. Taff L.G., Hall D.L. The use of angles and angular rates. I — Initial orbit determination. Celest. Mech., 1977, vol. 16, pp. 481-488. DOI: 10.1007/BF01229289
  2. Gronchi G.F., Dimare L., Milani A. Orbit determination with two{}body integrals. Celest. Mech. Dyn. Astr., 2010, vol. 107, pp. 299-318. DOI: 10.1007/s10569-010-9271-9
  3. Gronchi G.F., Farnocchia D., Dimare L. Orbit determination with two-body integrals II. Celest. Mech. Dyn. Astr., 2011, vol. 110, pp. 257-270. DOI: 10.1007/s10569-011-9357-z
  4. Gronchi G.F., Bau G., Maro S. Orbit determination with two-body integrals III. Celest. Mech. Dyn. Astr., 2015, vol. 123, pp. 105-122. DOI: 10.1007/s10569-015-9623-6
  5. Vinogradova T.A. Vychislenie ellipticheskoy orbity po dvum nabludeniyam, esli opredeleny scorosti izmeneniya sphericheskih koordinat [The determination of elliptical orbit from two observations with velocities of spherical coordinates] In: Tezisy dokladov konferencii "Astrometriya, geodinamika I nebesnaya mehanika na poroge XXI veka" [Proc. of conf. "Astrometry, geodynamics and celestial mechanics at the beginning of XXI century"], St.-Petersburg, 2000, pp. 263. (In Russian)
  6. Vinogradova T.A. The method of elliptic orbit determination from two short CCD series of observations. Bull. of Institute of Applied Astronomy RAS, 2016, vol. 39, pp. 8-16. (In Russian)
  7. Davidenko D.F. On a new method of numerical solution of systems of nonlinear equations. Dokl. Akad. Nauk. SSSR, 1953. vol. 88, no. 4, pp. 601-602.
  8. Shalashilin V.I., Kuznetsov E.B. Parametric continuation and optimal parametrization in applied mathematics and mechanics. Kluwer, 2003. 228 p. DOI: 10.1007/978-94-017-2537-8
  9. Hairer E., Norsett S.P., Wanner G. Solving ordinary differential equations I. Nonstiff problems. Springer-Verlag, 1993. 528 p. DOI: 10.1007/978-3-540-78862-1
  10. Subbotin M.F. Vvedenie V Teoreticheskuyu Astronomiyu [Introduction to Theoretical Astronomy]. Moscow, Nauka Publ., 1968, 800 p.
  11. Duboshin G.N. Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike [Ref. Guide to Celestial Mech. and Astrodynamics]. Moscow, Nauka Publ., 1976, 864 p.
  12. Kuznetsov V.B. Determination of orbit from two position vectors by the continuation method with optimal optimization. Izvestya glavnoy astronomicheskoy observatorii v Pulcove [News of the Main Astronomical Observatory in Pulkovo], 2016, no. 223, pp. 207-212.

Issue

Pages

79-85

Submitted

2017-10-27

Published

2017-12-28

How to Cite

Kuznetsov V.B. The determination of preliminary orbit from two series of observations by the continuation method with optimal parametrization. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 4, pp. 79-85. (In Russian)