Stress-strain state of the heterostructure In1-xGaxAs/GaAs

Authors

  • Lunin L.S. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Nefedov V.V. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russian Federation

UDC

621.382

DOI:

https://doi.org/10.31429/vestnik-16-1-83-87

Abstract

There are no models in use that would take into account the influence of internal deformations in strained structures on the key parameters of heterojunctions depending on the concentration of layer's components and thickness. The aim of the present paper is to determine the dependence of elastic strains and deformations and define changes in zone diagram of In1-xGaxAs/GaA structure depending of the concentration of components and thicknesses of layer and substrate. The paper features calculation of strains in In1-xGaxAs/GaA heterostructure at different correlations between the thicknesses of contacting semiconductors. The calculated values of conduction band edge shift and valence-band splitting in substrate and layer allow the authors to define the dependence between the alteration of band gap width in presence of deformation produced by the change of the thicknesses of layer and substrate and concentration of components.

The authors arrive at the definition, according to which the stress-strained state of In1-xGaxAs/GaA heterojunction leads to remarkable changes in its energy band structure. The paper includes equation of the dependence of main parameters of the energy band zone diagram of heterojunction on concentrations of components and proportion of thicknesses. The selection of correlations between substrate and layer thicknesses gives possibilities for a forecast and, further, management of parameters of the zone diagram and, consequently, of electronic properties of In1-xGaxAs/GaA heterojunctions. As a result of the research, the calculation formula of band gap width changes can be seen as a basis for analysis of changes being subject to alterations in concentration of components and correlation between layer and substrate thicknesses in elastically strained heterostructure.

Keywords:

stresses, deformation, strained heterostructure, gallium arsenide, gallium indium arsenide

Acknowledgement

Публикация подготовлена в рамках реализации ГЗ ЮНЦ РАН на 2019 г. (проект 01201354240).

Author Infos

Leonid S. Lunin

д-р физ.-мат. наук, профессор, заведующий лабораторией нанотехнологий и солнечной энергетики Южного научного центра РАН

e-mail: lunin_ls@mail.ru

Viktor V. Nefedov

канд. техн. наук, доцент, доцент кафедры "Общеинженерные дисциплины" Южно-Российского государственного политехнического университета (НПИ)

e-mail: nvvnpi@gmail.com

References

  1. Chebotarev, S.N., Lunina, M.L., Alfimova, D.L., Erimeev, G.A., Goncharova, L.M., Mohamed, A.A.A. Inducirovannye mehanicheskie naprjazhenija i jelektricheskie polja v nanogeterostrukturah s kvantovymi nitjami [Induced mechanical stresses and electric fields in nanoheterostructures with quantum threads]. Nauka Juga Rossii [Science of the South of Russia], 2017, vol. 13, no. 3, pp. 18–26. (In Russian)
  2. Kurilo, I.V., Guba, S.K. Dislokacii nesootvetstvija i naprjazhenija v geterostrukturah In1-xGaxAs/GaAs [Dislocation mismatches and stresses in heterostructures In1-xGaxAs/GaAs]. Neorganicheskie materialy [Inorganic materials], 2011, vol. 47, iss. 8, pp. 911–915. (In Russian)
  3. Nakajima, K. Calculation of compositional dependence of stresses in GaInAs/GaAs strained multilayer heterostructures. Journal of Crystal Grouth, 1993, vol. 126, pp. 511–524.
  4. Poljakova, A.L. Deformacija poluprovodnikov i poluprovodnikovyh priborov [Deformation of semiconductors and semiconductor devices]. Energija, Moscow, 1979. (In Russian)
  5. Bir, G.A., Pikus, G.E. Teorii deformacionnogo potenciala dlja poluprovodnikov so slozhnoj zonnoj strukturoj [Theories of the deformation potential for semiconductors with a complex band structure]. FTT [Solid state physics], 1960, vol. 2, no. 9, pp. 2237–2301.(In Russian)
  6. Landau, L.D., Lifshic, E.M. Teoreticheskaja fizika. Teorija uprugosti [Theoretical physics. Theory of elasticity]. Vol. VII, Fizmatlit, Moscow, 2007. (In Russian)
  7. Filippov, V.V., Vlasov, A.N., Bormontov, E.N. Modelirovanie deformacij i zonnoj diagrammy geterostruktury kremnij-germanij [Simulation of deformations and band diagrams of the silicon-germanium heterostructure]. Kondensirovannye sredy i mezhfaznye granicy [Condensed Matter and Interfaces], 2010, vol. 12, no. 3, pp. 282–287.
  8. Bezuhov, N.I. Teorija uprugosti i plastichnosti [Theory of elasticity and plasticity]. GITTL, Moscow, 1953.
  9. Yu, P.Y., Cardon, M. Fundamentals of Semiconductors: physics and materials properties. Berlin, Springer, 2010.
  10. Souaf, M., Baira, M., Nasr, O., Alouane, M. Helmi Hadj, Maaref, H., Sfaxi, L., Ilahi, B. Investigation of the InAs/GaAs quantum dots' size: dependence on the strain reducing layer's position. Materials, 2015, vol. 8, pp. 4699–-4709. DOI: 10.3390/ma8084699
  11. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 2001, vol. 89, p. 5815. DOI: 10.1063/1.1368156
  12. Novikov, B.V., Zegrja, G.G., Peleshhak, R.M., Dan'kiv, O.O., Gajsin, V.A., Talalaev, V.G., Shtrom, I.V. Baricheskie svojstva kvantovyh tochek InAS [Barometric properties of InAS quantum dots]. Fizika i tehnika poluprovodnikov [Semiconductor Physics and Technology], 2008, vol. 42, iss. 9, pp. 1094–1101. (In Russian)

Issue

Section

Physics

Pages

83-87

Submitted

2018-11-26

Published

2019-03-30

How to Cite

Lunin L.S., Nefedov V.V. Stress-strain state of the heterostructure In1-xGaxAs/GaAs. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 1, pp. 83-87. DOI: https://doi.org/10.31429/vestnik-16-1-83-87 (In Russian)