Numerical scheme in polar coordinates for the analysis of convection in porous media
UDC
532.546:519.6DOI:
https://doi.org/10.31429/vestnik-20-4-37-44Abstract
The work is devoted to the numerical investigation of the convection of an incompressible heat-conducting fluid in a circle domain filled by porous media and heated from below. Based on the Darcy model using staggered grids, a numerical finite-difference scheme for solving equations in polar coordinates is developed. Discretization with a five-point stencil is used to provide a second order of accuracy. We propose special approximations in the pole's vicinity of a circular domain for the problem regarding the stream function and temperature. It is shown that the developed scheme preserves the cosymmetry of the problem. It is extremely important for further computation of the family of stationary regimes. We calculated the critical Rayleigh numbers for the problem with linear in vertical direction distribution of the temperature. The smallest one corresponds to the occurrence of convection.
Keywords:
convection in porous media, cosymmetry, critical values of the Rayleigh numbers, finite-difference scheme, circular enclosureFunding information
The work was supported by a grant from the Government of the Russian Federation (agreement No. 075-15-2019-1928).
References
- Гершуни, Г.З., Жуховицкий, Е.М., Непомнящий, А.А., Устойчивость конвективных течений. Москва, Наука, 1989. [Gershuni, G.Z., Zhukhovitsky, E.M., Nepomnyashchy, A.A., Ustoychivost' konvektivnykh techeniy = Stability of convective currents. Moscow, Nauka, 1989. (in Russian)]
- Nield, D.A., Bejan, A., Convection in Porous Media. Springer, 2017. DOI: 10.1007/978-3-319-49562-0
- Трофимова, А.В., Цибулин В.Г., Конвективные движения в пористом кольцевом секторе. Прикладная механика и техническая физика, 2011, т. 52, № 3, с. 116–125. [Trofimova, A.V., Tsybulin V.G., Convective motions in a porous ring sector. Applied mechanics and technical physics, 2011, vol. 52, no. 3, pp. 427–435. DOI: 10.1134/S0021894411030138]
- Karasözen, B., Trofimova, A.V., Tsybulin, V.G., Natural convection in porous annular domains: Mimetic scheme and family of steady states. Journal of Computational Physics, 2012, vol. 231, iss. 7, pp. 2995–3005. DOI: 10.1016/j.jcp.2012.01.004
- Трофимова, А.В., Цибулин В.Г., Фильтрационная конвекция в кольцевой области и ответвление семейства стационарных режимов. Механика жидкости и газа, 2014, № 4, с. 73–83. [Trofimova, A.V., Tsybulin V.G., Filtration convection in an annular domain and branching of a family of steady-state regimes. Fluid dynamics, 2014, no. 4, pp. 481–490. DOI: 10.1134/S0015462814040085]
- Govorukhin, V.N., Sumbatyan, M.A., Tsybulin, V.G., Multistability of convective flows in a porous enclosure. Advanced Structured Materials, 2023, vol. 170, pp. 305–320. DOI: 10.1007/978-3-031-26186-2_19
- Любимов, Д.В., О конвективных движениях в пористой среде, подогреваемой снизу. Прикладная механика и техническая физика, 1975, № 2, с. 131–137. [Lyubimov, D.V., On convective movements in a porous medium heated from below. Prikladnaya mekhanika i tekhnicheskaya fizika = Applied mechanics and technical physics, 1975, no. 2, pp. 131–137. (in Russian)]
- Юдович, В.И., Косимметрия, вырождение решений операторных уравнений, возникновение фильтрационной конвекции. Мат. заметки, 1991, т. 49, вып. 5, c. 142–148. [Yudovich, V.I., Cosymmetry, degeneracy of the solutions of operator equations, the emergence of filtration convection. Matematicheskie zametki = Math Notes, 1991, vol. 49, no. 5, pp. 540-545. (in Russian)]
- Yudovich, V.I., Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it. Chaos, 1995, vol. 5, no. 2, pp. 402–411. DOI: 10.1063/1.166110
- Хрусталев, Б.М., Несенчук, А.П., Тепло- и массообмен. Минск, БНТУ, ч. 1, 2007. [Khrustalev, B.M., Nesenchuk, A.P., Teplo- i massoobmen = Heat and mass transfer. Minsk, BNTU, pt. 1, 2007. (in Russian)]
- Андреев, В.К., Гапоненко, Ю.А., Современные математические модели конвекции. Москва, Физматлит, 2008. [Andreev, V.K., Gaponenko, Y.A., Sovremennye matematicheskie modeli konvektsii = Modern mathematical models of convection. Moscow, Fizmatlit, 2008. (in Russian)]
- Калиткин, Н.Н., Численные методы. Москва, Наука, 1978. [Kalitkin, N.N., Chislennye metody = Numerical methods. Moscow, Nauka, 1978. (in Russian)]
- Самарский, А.А., Теория разностных схем. Москва, Наука, 1989. [Samarsky, A.A., Teoriya raznostnykh skhem = Theory of difference schemes. Moscow, Nauka, 1989. (in Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2024 Коханов П.В., Цибулин В.Г.
This work is licensed under a Creative Commons Attribution 4.0 International License.