Aerosol dynamics modeling and cloud formation during forest fires

Authors

  • Aloyan A.E. Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation
  • Arutunyan V.O. Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation

UDC

519.21

Abstract

A complex mathematical model is considered, which describes atmospheric circulation, aerosol dynamics, and convective cloud formation during forest fires. The dynamics of soot particles is described in terms of kinetic equations of condensation and coagulation. The model incorporates main microphysics processes responsible for the generation of cloud drops on condensation nuclei and their further growth (nucleation, condensation/evaporation, coagulation, sedimentation). The results of numerical experiments are used to analyze specific features of airflow patterns during forest fires, which are caused by the interaction between the fields of wind flow velocity, temperature, and humidity.

Keywords:

dynamics, condensation, coagulation, convective cloud

Funding information

Работа выполнена при поддержке РФФИ (06-05-65184).

Author info

  • Artash E. Aloyan

    д-р физ.-мат. наук, ведущий научный сотрудник Института вычислительной математики РАН

  • Vardan O. Arutunyan

    канд. физ.-мат. наук, научный сотрудник Института вычислительной математики РАН

References

  1. MacCracken M.C., Cess R.D., Potter G.R. Climatic effects of anthropogenic arctic aerosols and illustration of climatic feedback mechanisms with 2D climatic models // J. Geophys. Res. 1986. Vol. 91. P. 14445-14450.
  2. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. Новосибирск: Наука, 1992. 404 с.
  3. Алоян А.Е. Негидростатические модели локальных атмосферных процессов. Препринт №479 ВЦ СО АН СССР, Новосибирск, 1984. 36 с.
  4. Пененко В.В., Алоян А.Е. Модели и методы для задач охраны окружающей среды. М.: Наука, 1985. 256 с.
  5. Софронов М.А., Вакуров А.Д. Огонь в лесу. Новосибирск: Наука, 1981. 128 с.
  6. Amiro B.D., Todd J.B., Wotton B.M. Direct carbon from Canadian forest fires. Can. J. For. Res. 2001. Vol. 31. P. 512-525.
  7. Доррер Г.А. Математическое модели динамики лесных пожаров. М.: Лесная Промышленность, 1979. 160 с.
  8. Reid J.S., Hobbs P.V., Ferek R.J., Blake D.R., Martins J.V., Dunlap M.R., Liousse C. Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil // J. Geophys. Res. 1998. Vol. 103. P. 32059-32080.
  9. Гостинцев Ю.А., Копылов Н.П., Рыжков А.М., Хасанов Н.Р. Конвективный перенос продуктов сгорания в атмосфере над большими пожарами // Изв. АН СССР, сер.: Механика жидкостей и газа. 1990. №4. С. 47-52.
  10. Rothermel R.C. A mathematical model for predicting fire spread in wildland fuels // Research Paper INT-115. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 1972. P. 1-40.
  11. Brown I.R. Field test of a rate-spread model in slash fuels // USDA Forest Service Research Paper INT-116, Ogden, 1972. 24 p.
  12. Софронов М.А. Лесные пожары в горах Южной Сибири. М.: Наука, 1967. 152 с.
  13. Radke L.F., Hegg P.V., Hobbs P.V., Penker J.E. Effects of ageing on the smoke from a large forest fire // Atm. Res. 1995. Vol. 38. P. 315-332.
  14. Sero-Guillaume O., Margerit J. Modelling forest fires. Part I: a complete set of equations derived by extended irreversible thermodynamics // Int. J. Heat and Mass Transfer. 2002. Vol. 45. P. 1705-1722.
  15. Piskunov V.N., Golubev A.I., Goncharov E.A., Ismailova N.A. Kinetic modeling of composite particles coagulation // J. Aerosol Sci. 1997. Vol. 28. P. 1215-1231.
  16. Aloyan A.E., Egorov V.D., Marchuk G.I., Piskunov V.N. Aerosol formation mathematical modelling with consideration for condensation kinetics // Russ. J. Num. Analysis Math. Modelling. 1992. Vol. 7. No 7. Pp. 457-471.
  17. Aloyan A.E., Arutyunyan V.O., Lushnikov A.A., Zagaynov V.A. Transport of coagulating aerosol in the atmosphere // J. Aerosol Sci. 1997. Vol. 28. No 1. P. 67-85.
  18. Алоян А.Е., Пискунов В.Н. Моделирование региональной динамики газовых примесей и аэрозолей // Изв. РАН: Физика атмосферы и океана. 2005. Т. 41. №3. С. 328-340.
  19. Businger J.A., Wyngard I.C., Izumi Y., Bradley E.F. Flux-profile relationships in the atmospheric surface layer // J. Atm. Sci. 1971. Vol. 28. No 2. P. 181-189.
  20. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1977. 456 с.
  21. Aloyan A.E. Numerical modeling of the interaction of gas species and aerosols in the atmospheric dispersive systems // Russ. J. Num. Analysis Math. Modelling. 2000. Vol. 15. No 3-4. P. 211-224.
  22. Пискунов В.Н. Теоретические модели кинетики формирования аэрозолей. Саров: РФЯЦ-ВНИИЭФ, 2000. 209 с.
  23. Prupacher H.R., Klett J.D. Microphysics of Clouds and Precipitation. D. Reidel Publishing Co., Dordrecht, Holland, 1980. 714 p.
  24. Kogan Y.L. The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments // J. Atmos. Sci. 1991. Vol. 48. P. 1160-1189.
  25. Palmer T.Y., Norchutt L.I. Convective columns above large experimental fires // Fire Technology. 1975. Vol. 11. No 2. P. 111-118.
  26. Тернер Дж. Эффекты плавучести в жидкостях. М.: Мир, 1977. 432 с.

Downloads

Download data is not yet available.

Issue

Pages

5-19

Section

Mechanics

Dates

Submitted

June 27, 2008

Accepted

August 1, 2008

Published

September 26, 2008

How to Cite

[1]
Aloyan, A.E., Arutunyan, V.O., Aerosol dynamics modeling and cloud formation during forest fires. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2008, № 3, pp. 5–19.

Similar Articles

1-10 of 34

You may also start an advanced similarity search for this article.