The Karman’s problem concerning permeable disk rotation described in Brinkman equations

Authors

  • Gordeev Yu.N. National Research Nuclear University "Moscow Engineering Physics Institute", Moscow, Russian Federation
  • Prostokishin V.M. National Research Nuclear University "Moscow Engineering Physics Institute", Moscow, Russian Federation
  • Sandakov E.B. National Research Nuclear University "Moscow Engineering Physics Institute", Moscow, Russian Federation

UDC

532.517:532.526.75

EDN

RTPQZR

Abstract

The problem of the Karman of a stationary suspended particles in a viscous incompressible fluid in half-space under the evenly rotating in the own plane permeable and porous infinite radius disk is considered. It is assumed that the skeleton of the disk and its associated permeability significantly less than permeability unrelated suspended particles in a viscous incompressible liquid. In addition it is assumed that the motion of a viscous fluid in the disk and environment obey the Darcy -Brinkmann law (Navier-Stokes equations with linear speed of the resistance forces without convective components), and the suspension is described by Brinkmann equations (full Navier-Stokes equations without the resistance forces). The Brinkmann equations are used because they describe the flow of viscous incompressible fluid with partially blocked space, averaged by volume-porous mass.

Keywords:

viscous fluid motion, porous media, Bevers-Joseph conditions, Navie-Stokes equation, Darcy-Brinkman law

Funding information

Работа выполнена при поддержке ФЦП "Научные и научно-педагогические кадры инновационной России" 2009-2013 гг. (ГК П1109).

Authors info

  • Yuriy N. Gordeev

    д-р физ.-мат. наук, профессор кафедры высшей математики Национального исследовательского ядерного университета "Московский инженерно-физический институт"

  • Valeriy M. Prostokishin

    канд. физ.-мат. наук, доцент кафедры высшей математики Национального исследовательского ядерного университета "Московский инженерно-физический институт"

  • Evgeniy B. Sandakov

    канд. физ.-мат. наук, доцент кафедры высшей математики Национального исследовательского ядерного университета "Московский инженерно-физический институт"

References

  1. Bevers G.S., Joseph D.D. Boundary condition at a naturally permeable wall // J. Fluid Mech. 1967. Vol. 30. Part 1. P. 197-207.
  2. Brinkman H.C. A calculation of the viscous force exerted by of a flowing fluid on a dense swarm of particles // Appl. Sci. Res. 1947. Vol. A1. P. 27-34.
  3. Шлихтинг Г. Теория пограничного слоя. М.: Наука. 1974. 712 с.
  4. Nield D.A. The Beavers-Joseph Boundary Conditions and Related Matters: A Historical and Critical Note // Trans. Porous Med. 2009. Vol. 78. P. 537-540.
  5. von Karman Th. Uber laminare und turbulente Reibung // ZAAM 1. 1921. P.233-252.
  6. Cochran W.G. The flow due to a rotating disk // Proc. Cambr. Phil. Soc. 1934. Vol. 30. P. 365-375.
  7. Neale G., Nader W. Practical significance of Brinkman extension of Darsy’s law: coupled parallel flow within a channel and a bounding porous medium // Canad. J. Chem. Eng. 1974. Vol. 52. P. 475-478.
  8. Гольдштейн Р.В., Гордеев Ю.Н., Чижов Ю.Л. Задача Фон Кармана для вращающегося проницаемого диска // Изв. РАН МЖГ. 2012. №1. С. 59-67.
  9. Баренблатт Г.И., Черный Г.Г. О моментных соотношениях на поверхностях разрыва в диссипативных средах // ПММ. 1963. Т. XXVII. C. 784-793.
  10. Щелкачев В.Н. Уточнение вывода основных динамических уравнений фильтрации // Известия вузов. Нефть и газ. №2. 1961. С. 87-103.

Downloads

Download data is not yet available.

Issue

Pages

42-46

Section

Article

Dates

Submitted

October 9, 2013

Accepted

November 4, 2013

Published

December 30, 2013

How to Cite

[1]
Gordeev, Y.N., Prostokishin, V.M., Sandakov, E.B., The Karman’s problem concerning permeable disk rotation described in Brinkman equations. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2013, № 4, pp. 42–46.

Similar Articles

1-10 of 233

You may also start an advanced similarity search for this article.