On calculation of the effective thermal conductivity of textured matrix composites with high volume fraction of inclusions

Authors

  • Lavrov I.V. National Research University Of Electronic Technology, Moscow, Russian Federation
  • Bardushkin V.V. National Research University Of Electronic Technology, Moscow, Russian Federation
  • Sychev A.P. Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russian Federation
  • Yakovlev V.B. National Research University of Electronic Technology, Moscow, Russian Federation
  • Kochetygov A.A. National Research University Of Electronic Technology, Moscow, Russian Federation

UDC

536.2

DOI:

https://doi.org/10.31429/vestnik-15-3-92-101

Abstract

In the generalized singular approximation the expression for a tensor k of effective thermal conductivity of a multicomponent matrix composite is received. Each component is considered consisting of isotropic ellipsoidal inclusions with orientations distributed under some probabilistic law. The shape of the inclusions of a given type (relating to the given component) is considered identical.
On the basis of the received expression the method is developed for calculation of a tensor k of the three-component textured matrix tribocomposite with epoxy ED-20 system as a matrix, inclusions from a polytetrafluoroethylene of spherical shape as an antifrictional component
and glass fibers as the reinforcing component. It is considered that glass fibers, have small dispersion in orientations around some axis - a texture axis, their volume fraction changes in the range from 0,4 to 0,7. The method uses fine tuning of parameter k(c) of the comparison medium depending on a volume fraction of glass fibers and a ratio between thermal conductivities of inclusions and of matrix. This tuning dependence is received by comparison of results of model and finite-differences calculations for a two-component matrix composite with glass fibers without dispersion of their orientations. The method is applied to a research of influence of size of dispersion in orientations of glass fibers to tensor k components. Dependences of principal components of tensor of the effective thermal conductivity of this tribocomposite on a volume fraction of the glass reinforcing inclusions are given at various sizes of dispersion in their orientations. It is shown that increase in dispersion in orientations of glass fibers leads to reduction of longitudinal component and to growth of transverse component of tensor k with respect to the texture axis. It is also shown that values of the principal components of a tensor of effective thermal conductivity are less than average on volume basis value of a thermal conductivity.

Keywords:

tensor of effective thermal conductivity, texture, composite, tribocomposite, multicomponent, generalized singular approximation, matrix, ellipsoidal inclusion, self-consistent approximation, dispersion in orientations, fibers

Funding information

Работа выполнена при финансовой поддержке грантов РФФИ (16-08-00262-a, 17-08-01374-а).

Author info

  • Igor V. Lavrov

    канд. физ.-мат. наук, доцент кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

  • Vladimir V. Bardushkin

    д-р физ.-мат. наук, профессор кафедр "Высшая математика №2" и "Системная среда качества" Национального исследовательского университета "МИЭТ"

  • Aleksandr P. Sychev

    канд. физ.-мат. наук, заведующий лабораторией транспорта и новых композиционных материалов Южного научного центра РАН

  • Viktor B. Yakovlev

    д-р физ.-мат. наук, профессор РАН, профессор кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

  • Andrey A. Kochetygov

    аспирант кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

References

  1. Колесников В.И. Теплофизические процессы в металлополимерных трибосистемах. М.: Наука, 2003. 279 с. [Kolesnikov V.I. Thermophysical processes in metal-polymeric tribosystems. Nauka, Moscow, 2003. (In Russian)]
  2. Лавров И. Диэлектрические и проводящие свойства неоднородных сред с текстурой. Saarbrücken: LAP Lambert Academic Publishing, 2011. 168 c. [Lavrov I. Dielectric and conductive properties of inhomogeneous media with a texture. LAP Lambert Academic Publishing, Saarbrücken, 2011. (In Russian)]
  3. Rayleigh J.W.S. On the influence of obstacles arranged in rectangular order upon the properties of a medium // Philosophical Magazine. 1892. Vol. 34. P. 481–502. [Rayleigh J.W.S. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philosophical Magazine, 1892, vol. 34, pp. 481–502.]
  4. Зарубин В.С., Кувыркин Г.Н., Савельева И.Ю. Эффективная теплопроводность композита в случае отклонений формы включений от шаровой // Математическое моделирование и численные методы. 2014. Вып. 4. С. 3–17. [Zarubin V.S., Kuvyrkin G.N., Savel'eva I.Yu. Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and numerical methods], 2014, no. 4, pp. 3–17. (In Russian)]
  5. Зарубин В.С., Кувыркин Г.Н., Савельева И.Ю. Оценка эффективной теплопроводности однонаправленного волокнистого композита методом согласования // Наука и образование. МГТУ им. Баумана. Электронный журнал. 2013. № 11. С. 519–532. doi: 10.7463/1113.0622927 [Zarubin V.S., Kuvyrkin G.N., Savel'eva I.Yu. Evaluation of effective thermal conductivity of unidirectional fiber composite by the method of self-consistency. Nauka i obrazovaniye. MGTU im. Baumana. Elektronnyy zhurnal [Science and Education. Scientific Periodical of the Bauman MSTU. Electronic Scientific and Technical Journal], 2013, no. 11, pp. 519–532. doi: 10.7463/1113.0622927 (In Russian)]
  6. Лавров И.В., Бардушкин В.В., Сычев А.П., Яковлев В.Б., Кириллов Д.А. О вычислении эффективной теплопроводности текстурированных трибокомпозитов // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. № 2. С. 48–56. [Lavrov I.V., Bardushkin V.V., Sychev A.P., Yakovlev V.B., Kirillov D.A. On calculation of the effective thermal conductivity of textured tribocomposites. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 2, pp. 48–56. (In Russian)]
  7. Giordano S. Order and disorder in heterogeneous material microstructure: electric and elastic characterization of dispersions of pseudo-oriented spheroids // International Journal of Engineering Science. 2005. Vol. 43. P. 1033–1058. doi: 10.1016/j.ijengsci.2005.06.002 [Giordano S. Order and disorder in heterogeneous material microstructure: electric and elastic characterization of dispersions of pseudo-oriented spheroids. International Journal of Engineering Science, 2005, vol. 43, pp. 1033–1058. doi: 10.1016/j.ijengsci.2005.06.002]
  8. Giordano S. Equivalent permittivity tensor in anisotropic random media // J. of Electro-statics. 2006. Vol. 64. P. 655–663. doi: 10.1016/j.elstat.2005.11.003 [Giordano S. Equivalent permittivity tensor in anisotropic random media. J. of Electrostatics, 2006, vol. 64, pp. 655–663. doi: 10.1016/j.elstat.2005.11.003]
  9. Гельфанд И.М., Минлос Р.А., Шапиро З.Я. Представления группы вращений и группы Лоренца. М.: ГИФМЛ, 1958. 294 с. [Gel'fand I.M., Minlos R.A., Shapiro Z.Ja. Representations of the rotation group and the Lorentz group. GIFML, Moscow, 1958. (In Russian)]
  10. Иванов Е.Н., Лавров И.В. Теория диэлектрической проницаемости композиционных материалов с текстурой. Часть 1 // Оборонный комплекс – научно-техническому прогрессу России. 2007. № 1. С. 73–78. [Ivanov Ye.N., Lavrov I.V. The theory of permittivity of composite materials with a texture. Part 1. Oboronnyy kompleks – nauchno-tekhnicheskomu progressu Rossii [Defense Complex – Scientific and Technical Progress of Russia], 2007, no. 1, pp. 73–78. (In Russian)]
  11. Лавров И.В. Диэлектрическая проницаемость композиционных материалов с текстурой: эллипсоидальные анизотропные кристаллиты // Экологический вестник научных центров Черноморского экономического сотрудничества. 2009. № 1. С. 52–58. [Lavrov I.V. Permittivity of composite materials with texture: ellipsoidal anisotropic crystallites. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2009, no. 1, pp. 52–58. (In Russian)]
  12. Завгородняя М.И., Лавров И.В. Эффективные диэлектрические характеристики двумерных регулярных матричных структур: сравнение модельных и сеточных расчетов // Фундаментальные проблемы радиоэлектронного приборостроения. 2017. Т. 17. Ч. 3. С. 668–672. [Zavgorodnyaya M.I., Lavrov I.V. Effective dielectric characteristics of two-dimensional regular matrix structures: comparison of model and finite-difference calculations. Fundamental'nyye problemy radioelektronnogo priborostroyeniya [Fundamental Problems of Radioelectronics], 2017, vol. 17, part 3, pp. 668–672. (In Russian)]
  13. Spanoudaki A., Pelster R. The dependence on effective dielectric properties of composite materials: the particle size distribution // Physical Review B. 2001. Vol. 64. P. 064205-1–064205-6. doi: 10.1103/PhysRevB.64.064205
  14. Колесников В.И., Яковлев В.Б., Бардушкин В.В., Лавров И.В., Сычев А.П., Яковлева Е.Н. Об объединении методов оценки эффективных диэлектрических характеристик гетерогенных сред на основе обобщенного сингулярного приближения // Доклады Академии наук. 2013. Т. 452. № 1. С. 27–31. doi: 10.7868/S0869565213260083 [Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. Association of evaluation methods of the effective permittivity of heterogeneous media on the basis of a generalized singular approximation. Doklady Physics, 2013, vol. 58, no. 9, pp. 379–383. doi: 10.1134/S1028335813090012]
  15. Колесников В.И., Лавров И.В., Бардушкин В.В., Сычев А.П., Яковлев В.Б. Метод оценки распределений локальных температурных полей в многокомпонентных композитах // Наука Юга России. 2017. Т. 13. № 2. С. 13–20. doi: 10.23885/2500-0640-2017-13-2-13-20 [Kolesnikov V.I., Lavrov I.V., Bardushkin V.V., Sychev A.P., Yakovlev V.B. A method of the estimation of the local thermal fields distribution in multicomponent composites. Nauka Yuga Rossii [Science in the South of Russia], 2017, vol. 13, no. 2, pp. 13–20. doi: 10.23885/2500-0640-2017-13-2-13-20 (In Russian)]
  16. Гельфанд И.М., Шилов Г.Е. Обобщенные функции и действия над ними. М.: ГИФМЛ, 1958. 440 с. [Gel'fand I.M., Shilov G.E. Generalized functions. Properties and Operations. GIFML, Moscow, 1958. (In Russian)]
  17. Шермергор Т.Д. Теория упругости микронеоднородных сред. М.: Наука, 1977. 399 с. [Shermergor T.D. Micromechanics of inhomogeneous medium. Nauka, Moscow, 1977. (In Russian)]
  18. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986. 660 с. [Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. Wiley-VCH, Weinheim, 1998.]
  19. Физические величины: Справочник / Под ред. И.С. Григорьева, Е.3. Мейлихова. М: Энергоатомиздат, 1991. 1232 с. [Grigor'ev I.S., Meilikhov E.Z. (eds.) Physical Quantities: A Handbook. Moscow, Energoatomizdat Publ., 1991, 1232 p. (In Russian)]
  20. Лавров И.В. Эффективная проводимость поликристаллической среды. Одноосная текстура и двуосные кристаллиты // Известия вузов. Электроника. 2010. № 3. С. 3–12. [Lavrov I.V. Effective conductivity of a polycrystalline medium. Uniaxial texture and biaxial crystallites. Semiconductors, 2011, vol. 45, no. 13, pp. 1621–1627. doi: 10.1134/S106378261113015X]

Downloads

Issue

Pages

92-101

Section

Physics

Dates

Submitted

July 11, 2018

Accepted

August 14, 2018

Published

September 29, 2018

How to Cite

[1]
Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B., Kochetygov, A.A., On calculation of the effective thermal conductivity of textured matrix composites with high volume fraction of inclusions. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 3, pp. 92–101. DOI: 10.31429/vestnik-15-3-92-101

Similar Articles

1-10 of 1069

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>