Прогнозирование эффективной теплопроводности сферопластиков
УДК
536.2DOI:
https://doi.org/10.31429/vestnik-20-1-65-75Аннотация
Решается задача прогнозирования эффективной теплопроводности образца сферопластика в форме диска с поддерживающимися на противоположных гранях его оснований постоянными значительно различающимися температурами. Предложена двухэтапная схема расчета. Первый этап состоит в вычислении эффективной теплопроводности малой макроскопической области образца, температуру в которой можно считать приближенно равной некоторой средней температуре в этой области. На втором этапе вычисляется эффективная теплопроводность образца референтной среды (такой же формы, как и у исходного образца сферопластика), у которого локальная теплопроводность в каждой точке равна эффективной теплопроводности в соответствующей малой макроскопической области исходного образца сферопластика, содержащей эту точку.
Для модельных сферопластиков (композиции на основе эпоксидной смолы ЭД-20 с аминным отвердителем ПО-300 и сферическими микросферами с оболочкой из боросиликатного стекла, заполненными газообразным азотом) проведены расчеты их эффективной теплопроводности. Численное моделирование учитывало изменение объемной доли микросфер и величины безразмерного структурного параметра, представляющего собой отношение толщины оболочки микросферы к ее радиусу.
Ключевые слова:
эффективная теплопроводность, матрица, включение, обобщенное приближение эффективного поля, приближение Максвелла-Гарнетта, приближение самосогласования, сферопластик, микросфера, моделированиеИнформация о финансировании
Работа выполнена в рамках государственного задания по теме № 122040800154-7.
Библиографические ссылки
- Трофимов, А.Н., Высокотехнологичные эпоксидные связующие, полимерные композиты и инновационные технологии получения радиопрозрачных изделий специального назначения из конструкционных стеклопластиков: дисс. д-ра техн. наук, 05.17.06. Москва, 2018. [Trofimov, A.N., High-tech epoxy binders, polymer composites and innovative technologies for the production of special-purpose radio-transparent products from structural fiberglass: Diss. Ph.D. in Tech. Sci., 05.17.06. Moscow, 2018. (in Russian)]
- Зарубин, В.С., Кувыркин, Г.Н., Савельева, И.Ю., Математическая модель теплопереноса в сферопластике. Математика и математическое моделирование. МГТУ им. Н.Э. Баумана. Электронный журнал, 2016, № 4, с. 42–58. [Zarubin, V.S., Kuvyrkin, G.N., Savel'eva, I.Yu., A Mathematical Model of Heat Transfer in Spheroplastic. Matematika i matematicheskoye modelirovaniye. MGTU im. N.E. Baumana. Elektronnyy zhurnal = Mathematics and Mathematical Modelling of the Bauman MSTU, 2016, no. 4, pp. 42–58. (in Russian)] EDN: XKOKMZ DOI: 10.7463/mathm.0416.0846276
- Чухланов, В.Ю., Селиванов, О.Г., Исследование диэлектрических свойств синтактических пен на основе кремнийорганического связующего. Международный журнал прикладных и фундаментальных исследований, 2014, № 8, с. 26–29. [Chukhlanov, V.Yu., Selivanov, O.G., Investigation of the dielectric properties of syntactic foams based on an organosilicon binder. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy = International Journal of Applied and Fundamental Research, 2014, no. 8, pp. 26–29. (in Russian)] EDN: SFWCBB
- Михайлов, В.А., Синтактные материалы с высокими диэлектрическими свойствами на основе кремнийорганического полимера. Успехи современного естествознания, 2015, № 12, с. 47–50. [Mikhailov, V.A., Syntactic materials with high dielectric properties based on organosilicon polymer. Uspekhi sovremennogo yestestvoznaniya = Successes of Modern Natural Science, 2015, no. 12, pp. 47–50. (in Russian)] EDN: VLCYLF
- Чухланов, В.Ю., Панов, Ю.Т., Синявин, А.В., Ермолаева, Е.В., Газонаполненные пластмассы. Изд-во Владимирского государственного университета, Владимир, 2008. [Chukhlanov V.Yu., Panov, Yu.T., Sinyavin, A.V., Ermolaeva, E.V., Gazonapolnennyye plastmassy = Gas-filled plastics. Vladimir State University Publ., Vladimir, 2008. (in Russian)]
- Яковенко, Т.В., Яруллина, Г.К., Гарустович, И.В., Шишилов, О.Н., Мельников, Н.О., Сферопластики как термоизолирующие защитные материалы промышленного назначения. Успехи в химии и химической технологии, 2016, т. XXX, № 8, с. 71–73. [Yakovenko, T.V., Yarullina, G.K., Garustovich, I.V., Shishilov, O.N., Melnikov, N.O., Spheroplastics as thermally insulating protective materials for industrial use. Uspekhi v khimii i khimicheskoy tekhnologii = Advances in Chemistry and Chemical Technology, 2016, vol. XXX, no. 8, pp. 71–73. (in Russian)] EDN: XEBLUF
- Лавров, И.В., Бардушкин, В.В., Яковлев, В.Б., Бардушкин, А.В., Прогнозирование эффективной теплопроводности пенополимерных материалов. Тепловые процессы в технике, 2022, т. 14, № 7, с. 290–300. [Lavrov, I.V., Bardushkin, V.V., Yakovlev, V.B., Bardushkin, A.V., Predicting the effective thermal conductivity of foam-polymer materials. Teplovyye protsessy v tekhnike = Thermal Processes in Engineering, 2022, vol. 14, no. 7, pp. 290–300. (in Russian)] EDN: JNPDTU DOI: 10.34759/tpt-2022-14-7-290-300
- Benveniste, Y., On the effective thermal conductivity of multiphase composites. J. of Applied Mathematics and Physics, 1986, vol. 37, pp. 696–713.
- Лыков, А.В., Теория теплопроводности. Высшая школа, Москва, 1967. [Lykov, A.V., Teoriya teploprovodnosti = Theory of thermal conductivity. Vysshaya shkola, Moscow, 1967. (in Russian)]
- Карташов, Э.М., Кудинов, В.А., Аналитические методы теории теплопроводности и ее приложений. ЛЕНАНД, Москва, 2018. [Kartashov, E.M., Kudinov, V.A., Analiticheskiye metody teorii teploprovodnosti i yeye prilozheniy = Analytical Methods of the Theory of Heat Conduction and its Applications. LENAND, Moscow, 2018. (in Russian)]
- Зарубин, В.С., Кувыркин, Г.Н., Савельева, И.Ю., Радиационно-кондуктивный теплоперенос в шаровой полости. Теплофизика высоких температур, 2015, т. 53, № 2, с. 243–249. EDN: TLOTNN DOI: 10.7868/S0040364415020246 [Zarubin, V.S., Kuvyrkin, G.N., Savel'eva, I.Yu., The radiation-conductive heat transfer in a spherical cavity. Teplofizika vysokikh temperature = High Temperature, 2015, vol. 53, no. 2, pp. 234–239. DOI: 10.1134/S0018151X15020248]
- Колесников, В.И., Бардушкин, В.В., Лавров, И.В., Сычев, А.П., Яковлев, В.Б., Обобщённое приближение эффективного поля для неоднородной среды с включениями в оболочке. Доклады Академии наук, 2017, т. 476, № 3, с. 280–284. EDN: ZEIMPF DOI: 10.7868/S0869565217270081 [Kolesnikov, V.I., Bardushkin, V.V., Lavrov, I.V., Sychev, A.P., Yakovlev, V.B., A Generalized Effective-Field Approximation for an Inhomogeneous Medium with Coated Inclusions. Doklady Physics, 2017, vol. 62, no. 9, pp. 415–419. DOI: 10.1134/S1028335817090087]
- Зигель, Р., Хауэлл, Дж., Теплообмен излучением. Мир, Москва, 1975. [Siegel, R., Howell, J.R., Thermal Radiation Heat Transfer. New Jourk a. o., 1972.]
- Лавров, И.В., Бардушкин, В.В., Сычев, А.П., Яковлев, В.Б., Кочетыгов, А.А., Прогнозирование эффективной теплопроводности трибокомпозитов с антифрикционными включениями в оболочке. Вестник машиностроения, 2018, № 11, с. 53–57. EDN: VNBTQO [Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B., Kochetygov, A.A., Predicting the Effective Thermal Conductivity of Tribocomposites with Coated Antifrictional Inclusions. Russian Engineering Research, 2019, vol. 39, no. 2. pp. 117–121. DOI: 10.3103/S1068798X19020217]
- Garnett, J.C.M., Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. London, 1904, vol. 203, pp. 385–420.
- Колесников, В.И., Лавров, И.В., Бардушкин, В.В., Сычев, А.П., Яковлев, В.Б., Обобщенное приближение Максвелла Гарнетта для текстурированных матричных композитов с включениями в оболочке. Доклады Российской Академии наук. Физика, технические науки, 2021, т. 498, с. 11–16. EDN: JZRFZH DOI: 10.31857/S268674002103010X [Kolesnikov, V.I., Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B., The Generalized Maxwell Garnett Approximation for Textured Matrix Composites with Coated Inclusions. Doklady Physics, 2021, vol. 66, no. 5, pp. 123–128. DOI: 10.1134/S1028335821050049]
- Применко, В.И., Влияние состава на теплопроводность стекла. Вопросы химии и химической технологии. Изд-во Харьковского университета, Харьков, 1981, вып. 62, с. 72–74. [Primenko, V.I., Influence of the composition on the thermal conductivity of glass. Voprosy khimii i khimicheskoy tekhnologii = Questions of chemistry and chemical technology. Kharkov University Publ., Kharkov, 1981, iss. 62, pp. 72–74. (in Russian)]
- Чэнь, Я., Мараховский, П.С., Малышева, Г.В., Определение теплофизических свойств эпоксидных материалов в процессе их отверждения. Труды ВИАМ, 2018, № 9 (69), с. 119–123. [Chen, Ya., Marakhovsky, P.S., Malysheva, G.V., Determination of thermophysical properties of epoxy materials during their curing. Trudy VIAM = Proceedings of VIAM, 2018, no. 9 (69), pp. 119–123. (in Russian)] EDN: YAKSVN DOI: 10.18577/2307-6046-2018-0-9-119-123
- Григорьева, И.С., Мейлихова, Е.З. (под ред.), Физические величины: Справочник. Энергоатомиздат, Москва, 1991. [Grigor'ev, I.S., Meilikhov, E.Z. (eds.), Physical Quantities: A Handbook. Energoatomizdat, Moscow, 1991. (in Russian)]
- Milton, G. The Theory of Composites. Cambridge University Press, Cambridge, 2004.
Скачивания

Загрузки
Даты
Поступила в редакцию
Принята к публикации
Публикация
Как цитировать
Лицензия
Copyright (c) 2023 Лавров И.В., Бардушкин А.В., Сычев А.П., Яковлев В.Б.

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.