Prediction of the effective thermal conductivity of spheroplastics
UDC
536.2DOI:
https://doi.org/10.31429/vestnik-20-1-65-75Abstract
The paper solves the problem of predicting the effective thermal conductivity of a disk-shaped spheroplastic sample with constant, significantly different temperatures maintained on opposite faces of its bases. A two-stage calculation scheme is proposed. The first stage consists in calculating the effective thermal conductivity of a small macroscopic region of the sample, the temperature in which can be considered approximately equal to some average temperature in this region. At the second stage, the effective thermal conductivity of the reference medium sample (of the same shape as that of the original spheroplastic sample) is calculated, in which the local thermal conductivity at each point is equal to the effective thermal conductivity in the corresponding small macroscopic region of the original spheroplastic sample containing this point.
Compositions based on epoxy resin ED-20 with amine hardener PO-300 and spherical microspheres with a shell of borosilicate glass filled with gaseous nitrogen are considered.
Model calculations of the effective thermal conductivity of thin layers of a spheroplastic sample at different temperatures and different sizes of microspheres depending on their volume fraction in the material are carried out. The calculations were performed on the basis of the generalized effective-field approximation for a matrix composite with inclusions in the shell. It has been established that with an increase in the volume fraction of microspheres in the material, the thermal conductivity of the spheroplastic layer can either decrease or increase depending on the ratio between the wall thickness and the radius of the microsphere.
Numerical simulation of the effective thermal conductivity for a disk-shaped spheroplastic sample at temperatures of 150°C and 25°C applied to its opposite bases has been carried out. The calculations took into account the value of the dimensionless structural parameter, which is the ratio of the microsphere shell thickness to its radius. It is shown that the effective thermal conductivity of a spheroplastic sample significantly depends on the volume fraction of microspheres and the value of the structural parameter. It has been established that an increase in the volume fraction of microspheres, depending on the ratio between their wall thickness and radius, leads to both an increase and a decrease in the thermal conductivity of the epoxy compositions under consideration.
Keywords:
effective thermal conductivity, matrix, inclusion, generalized effective-field approximation, Maxwell-Garnett approximation, self-consistency approximation, spheroplastic, microsphere, modelingFunding information
The work was carried out within the framework of the state assignment on project No. 122040800154-7.
References
- Трофимов, А.Н., Высокотехнологичные эпоксидные связующие, полимерные композиты и инновационные технологии получения радиопрозрачных изделий специального назначения из конструкционных стеклопластиков: дисс. д-ра техн. наук, 05.17.06. Москва, 2018. [Trofimov, A.N., High-tech epoxy binders, polymer composites and innovative technologies for the production of special-purpose radio-transparent products from structural fiberglass: Diss. Ph.D. in Tech. Sci., 05.17.06. Moscow, 2018. (in Russian)]
- Зарубин, В.С., Кувыркин, Г.Н., Савельева, И.Ю., Математическая модель теплопереноса в сферопластике. Математика и математическое моделирование. МГТУ им. Н.Э. Баумана. Электронный журнал, 2016, № 4, с. 42–58. [Zarubin, V.S., Kuvyrkin, G.N., Savel'eva, I.Yu., A Mathematical Model of Heat Transfer in Spheroplastic. Matematika i matematicheskoye modelirovaniye. MGTU im. N.E. Baumana. Elektronnyy zhurnal = Mathematics and Mathematical Modelling of the Bauman MSTU, 2016, no. 4, pp. 42–58. (in Russian)] EDN: XKOKMZ DOI: 10.7463/mathm.0416.0846276
- Чухланов, В.Ю., Селиванов, О.Г., Исследование диэлектрических свойств синтактических пен на основе кремнийорганического связующего. Международный журнал прикладных и фундаментальных исследований, 2014, № 8, с. 26–29. [Chukhlanov, V.Yu., Selivanov, O.G., Investigation of the dielectric properties of syntactic foams based on an organosilicon binder. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy = International Journal of Applied and Fundamental Research, 2014, no. 8, pp. 26–29. (in Russian)] EDN: SFWCBB
- Михайлов, В.А., Синтактные материалы с высокими диэлектрическими свойствами на основе кремнийорганического полимера. Успехи современного естествознания, 2015, № 12, с. 47–50. [Mikhailov, V.A., Syntactic materials with high dielectric properties based on organosilicon polymer. Uspekhi sovremennogo yestestvoznaniya = Successes of Modern Natural Science, 2015, no. 12, pp. 47–50. (in Russian)] EDN: VLCYLF
- Чухланов, В.Ю., Панов, Ю.Т., Синявин, А.В., Ермолаева, Е.В., Газонаполненные пластмассы. Изд-во Владимирского государственного университета, Владимир, 2008. [Chukhlanov V.Yu., Panov, Yu.T., Sinyavin, A.V., Ermolaeva, E.V., Gazonapolnennyye plastmassy = Gas-filled plastics. Vladimir State University Publ., Vladimir, 2008. (in Russian)]
- Яковенко, Т.В., Яруллина, Г.К., Гарустович, И.В., Шишилов, О.Н., Мельников, Н.О., Сферопластики как термоизолирующие защитные материалы промышленного назначения. Успехи в химии и химической технологии, 2016, т. XXX, № 8, с. 71–73. [Yakovenko, T.V., Yarullina, G.K., Garustovich, I.V., Shishilov, O.N., Melnikov, N.O., Spheroplastics as thermally insulating protective materials for industrial use. Uspekhi v khimii i khimicheskoy tekhnologii = Advances in Chemistry and Chemical Technology, 2016, vol. XXX, no. 8, pp. 71–73. (in Russian)] EDN: XEBLUF
- Лавров, И.В., Бардушкин, В.В., Яковлев, В.Б., Бардушкин, А.В., Прогнозирование эффективной теплопроводности пенополимерных материалов. Тепловые процессы в технике, 2022, т. 14, № 7, с. 290–300. [Lavrov, I.V., Bardushkin, V.V., Yakovlev, V.B., Bardushkin, A.V., Predicting the effective thermal conductivity of foam-polymer materials. Teplovyye protsessy v tekhnike = Thermal Processes in Engineering, 2022, vol. 14, no. 7, pp. 290–300. (in Russian)] EDN: JNPDTU DOI: 10.34759/tpt-2022-14-7-290-300
- Benveniste, Y., On the effective thermal conductivity of multiphase composites. J. of Applied Mathematics and Physics, 1986, vol. 37, pp. 696–713.
- Лыков, А.В., Теория теплопроводности. Высшая школа, Москва, 1967. [Lykov, A.V., Teoriya teploprovodnosti = Theory of thermal conductivity. Vysshaya shkola, Moscow, 1967. (in Russian)]
- Карташов, Э.М., Кудинов, В.А., Аналитические методы теории теплопроводности и ее приложений. ЛЕНАНД, Москва, 2018. [Kartashov, E.M., Kudinov, V.A., Analiticheskiye metody teorii teploprovodnosti i yeye prilozheniy = Analytical Methods of the Theory of Heat Conduction and its Applications. LENAND, Moscow, 2018. (in Russian)]
- Зарубин, В.С., Кувыркин, Г.Н., Савельева, И.Ю., Радиационно-кондуктивный теплоперенос в шаровой полости. Теплофизика высоких температур, 2015, т. 53, № 2, с. 243–249. EDN: TLOTNN DOI: 10.7868/S0040364415020246 [Zarubin, V.S., Kuvyrkin, G.N., Savel'eva, I.Yu., The radiation-conductive heat transfer in a spherical cavity. Teplofizika vysokikh temperature = High Temperature, 2015, vol. 53, no. 2, pp. 234–239. DOI: 10.1134/S0018151X15020248]
- Колесников, В.И., Бардушкин, В.В., Лавров, И.В., Сычев, А.П., Яковлев, В.Б., Обобщённое приближение эффективного поля для неоднородной среды с включениями в оболочке. Доклады Академии наук, 2017, т. 476, № 3, с. 280–284. EDN: ZEIMPF DOI: 10.7868/S0869565217270081 [Kolesnikov, V.I., Bardushkin, V.V., Lavrov, I.V., Sychev, A.P., Yakovlev, V.B., A Generalized Effective-Field Approximation for an Inhomogeneous Medium with Coated Inclusions. Doklady Physics, 2017, vol. 62, no. 9, pp. 415–419. DOI: 10.1134/S1028335817090087]
- Зигель, Р., Хауэлл, Дж., Теплообмен излучением. Мир, Москва, 1975. [Siegel, R., Howell, J.R., Thermal Radiation Heat Transfer. New Jourk a. o., 1972.]
- Лавров, И.В., Бардушкин, В.В., Сычев, А.П., Яковлев, В.Б., Кочетыгов, А.А., Прогнозирование эффективной теплопроводности трибокомпозитов с антифрикционными включениями в оболочке. Вестник машиностроения, 2018, № 11, с. 53–57. EDN: VNBTQO [Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B., Kochetygov, A.A., Predicting the Effective Thermal Conductivity of Tribocomposites with Coated Antifrictional Inclusions. Russian Engineering Research, 2019, vol. 39, no. 2. pp. 117–121. DOI: 10.3103/S1068798X19020217]
- Garnett, J.C.M., Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. London, 1904, vol. 203, pp. 385–420.
- Колесников, В.И., Лавров, И.В., Бардушкин, В.В., Сычев, А.П., Яковлев, В.Б., Обобщенное приближение Максвелла Гарнетта для текстурированных матричных композитов с включениями в оболочке. Доклады Российской Академии наук. Физика, технические науки, 2021, т. 498, с. 11–16. EDN: JZRFZH DOI: 10.31857/S268674002103010X [Kolesnikov, V.I., Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B., The Generalized Maxwell Garnett Approximation for Textured Matrix Composites with Coated Inclusions. Doklady Physics, 2021, vol. 66, no. 5, pp. 123–128. DOI: 10.1134/S1028335821050049]
- Применко, В.И., Влияние состава на теплопроводность стекла. Вопросы химии и химической технологии. Изд-во Харьковского университета, Харьков, 1981, вып. 62, с. 72–74. [Primenko, V.I., Influence of the composition on the thermal conductivity of glass. Voprosy khimii i khimicheskoy tekhnologii = Questions of chemistry and chemical technology. Kharkov University Publ., Kharkov, 1981, iss. 62, pp. 72–74. (in Russian)]
- Чэнь, Я., Мараховский, П.С., Малышева, Г.В., Определение теплофизических свойств эпоксидных материалов в процессе их отверждения. Труды ВИАМ, 2018, № 9 (69), с. 119–123. [Chen, Ya., Marakhovsky, P.S., Malysheva, G.V., Determination of thermophysical properties of epoxy materials during their curing. Trudy VIAM = Proceedings of VIAM, 2018, no. 9 (69), pp. 119–123. (in Russian)] EDN: YAKSVN DOI: 10.18577/2307-6046-2018-0-9-119-123
- Григорьева, И.С., Мейлихова, Е.З. (под ред.), Физические величины: Справочник. Энергоатомиздат, Москва, 1991. [Grigor'ev, I.S., Meilikhov, E.Z. (eds.), Physical Quantities: A Handbook. Energoatomizdat, Moscow, 1991. (in Russian)]
- Milton, G. The Theory of Composites. Cambridge University Press, Cambridge, 2004.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2023 Лавров И.В., Бардушкин А.В., Сычев А.П., Яковлев В.Б.
This work is licensed under a Creative Commons Attribution 4.0 International License.