Structure of quantum mechanics
UDC
530.145.81DOI:
https://doi.org/10.31429/vestnik-17-2-66-73Abstract
Interest in quantum mechanics is growing in connection with new experiments with quantum particles and a deeper knowledge of nano- and subatomic principles. The practical use of quantum mechanic methods goes in parallel with the constant rethinking of its foundations, its ideological and epistemological role. A rigorous exposition of the mathematical foundations of quantum mechanics in abstract-Hilbert spaces was given in the book of J. Von Neumann in 1933. It is the first and only experiment that has been brought to the end, the presentation of the apparatus of quantum mechanics with the sequence and rigor which usually presented in a purely mathematical theory. Later in 1949 the group of French mathematicians under the pseudonym N. Bourbaki introduced the concept of "mathematical structure" into mathematics. To date, there is no narration of quantum mechanics, where mathematical rigor is combined with the concept of "mathematical structure". In the framework of the approach formulated by the group of N. Burbaki, quantum mechanics is a composite structure consisting of three simple mathematical structures: the Hilbert space of complex-valued vectors, the space of linear self-adjoint operators and the structure of classical mechanics are showed in this article.
Keywords:
quantum mechanics, axiomatic method, mathematical structure, Hilbert spaceReferences
- Сериков А.А., Харкянен В.Н. Одномерная стационарная миграция квантовых частиц // Теоретическая и математическая физика. 1989. Т. 78, № 1. С. 82–88. [Serikov, A.A., Harkyanen, V.N. One-dimensional steady migration of quantum particles. Theoretical and mathematical physics, vol. 78, iss. 1. 1989, pp. 82–-88.]
- Tan W.-C., Inkson J.C. Magnetization, persistent currents, and their relation in quantum rings and dots // Phys. Rev. B. Vol. 60, 1999. P. 5626–5635. DOI: 10.1103/PhysRevB.60.5626
- Маргулис В.А. Магнитный момент кольца Волкано // Физика твердого тела. 2008. Т. 50. С. 148–153. [Margulis, V.A. Magnitnyy moment kol'tsa Volkano [The magnetic moment of the Volcano ring]. Fizika tverdogo tela [Solid State Physics], 2008, vol. 50 . pp. 148–153. (In Russian)]
- Styer D.F., Balkin M.S., Becker K.M., Burns M.R., Dudley C.E., Forth S.T., Gaumer J.S, Kramer M.A., Oertel D.C., Park L.H., Rinkoski M.T., Smith C.T., Wotherspoon T.D. Nine formulations of quantum mechanics // American Journal of Physics. 2002. Vol. 70. P. 288–297.
- Белинский А.В. Квантовые измерения. М.: БИНОМ. 2008. 183 с. [Belinskiy, A.V. Kvantovyye izmereniya [Quantum measurements]. BINOM, Moscow, 2008. (In Russian)]
- Neumann J. Mathematical of Quantum Mechanics. Berlin, 1932. 368 p.
- Bourbaki N. L'Architecture des mathematiques // Les grands courants de la pensée mathématique. 1948. P. 35–37.
- Колмогоров А.Н. Математика –- наука и профессия. М.: Наука. Гл. ред. физ.-мат. лит., 1988. 288 с. [Kolmogorov, A.N. Matematika –- nauka i professiya [Mathematics as a science and a profession]. Nauka. Gl. red. fiz.-mat. lit., Moscow, 1988. (In Russian)]
- Лебедев К.А. О методических и научных принципах создания школьного учебника математики серии <<МГУ-школе>>. I. Числовые системы (5–6 классы) // Математическое образование. 2016. № 3(79). С. 3–20. [Lebedev, K.A. O metodicheskikh i nauchnykh printsipakh sozdaniya shkol'nogo uchebnika matematiki serii ``MGU-shkolE''. I. Chisloviyye sistemy (5-6 klassy) [On the methodological and scientific principles of creating a school textbook of mathematics series ``MSU-school'' Pt. I. Numerical systems (grades 5-6)]. Matematicheskoye obrazovaniye [Mathematical education], 2016, no. 3(79), pp. 3–20. (In Russian)]
- Лебедев К.А. Архитектура элементарной математики. Краснодар: КубГУ, 2000. 34 с. [Lebedev, K.A. Arkhitektura elementarnoy matematiki [Architecture of elementary mathematics]. Kuban State University, Krasnodar, 2000. (In Russian)]
- В.Л. ван дер Варден. Алгебра. М.: Наука. 1976. 647 с. [Varden, B.L. Algebra, vol. 2, Springer, New York, 1991.]
- Лебедев К.А. Архитектура математики. Топология, алгебра и функциональный анализ. Краснодар: КубГУ, 2001. 18 с. [Lebedev, K.A. Arkhitektura matematiki. Topologiya, algebra i funktsional'nyy analiz [Architecture of elementary mathematics]. Kuban State University, Krasnodar, 2001. (In Russian)]
- Макки Дж. Лекции по математическим основам квантовой механики. М.: Мир, 1965. 130 с. [Makki, Dzh. Lektsii po matematicheskim osnovam Kvantovoy mekhaniki [Lectures on the mathematical foundations of quantum mechanics]. Mir, Moscow, 1965. (In Russian)]
- Фаддеев Л.Д., Якубовский О.А. Лекции по квантовой механике для студентов-математиков. Л.: Изд-во Ленингр. ун-та, 1980. 200 с. [Faddeyev, L.D., Yakubovskiy, O.A. Lektsii po kvantovoy mekhanike dlya studentov-matematikov [Lectures on quantum mechanics for mathematics students]. Izd-vo Leningr. un-ta, Leningrad, 1980. (In Russian)]
- Ландау П.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1989. 767 с. [Landau, P.D., Lifshits, Ye.M. Kvantovaya mekhanika. Nerelyativistskaya teoriya [Quantum mechanics. Nonrelativistic theory]. Nauka, Moscow, 1989. (In Russian)]
- Левич В.Г., Вдовин Ю.А., Мямлин В.А. Курс теоретической физики. Т. 2. Квантовая механика, квантовая статистика и физическая кинетика. М.: Наука, 1971. 936 с. [Levich, V.G., Vdovin, Yu.A., Myamlin, V.A. Kurs teoreticheskoy fiziki. T. 2. Kvantovaya mekhanika, kvantovaya statistikami fizicheskaya kinetika [Course of theoretical physics. T.2. Quantum mechanics, quantum statistics, physical kinetics]. Nauka, Moscow, 1971. (In Russian)]
- Шпольский Э.В. Атомная физика. Ч. 2. М.: Мир, 1974. 444 с. [Shpol'skiy, E.V. Atomnaya fizika. Ch. 2 [Atomic physics. Part 2]. Mir, Moscow, 1974. (In Russian)]
- Шифф Л. Квантовая механика. М.: Наука, 1959. 545 с. [Shiff, L. Kvantovaya mekhanika [Quantum mechanics]. Nauka, Moscow, 1959. (In Russian)]
- Садовничий В.А. Теория операторов. М.: Высшая школа, 1999. 368 с. [Sadovnichiy, V.A. Teoriya operatorov [Theory of operators]. Vysshaya shkola, Moscow, 1999. (In Russian)]
- Гельфанд И.М. Лекции по линейной алгебре. М.: Наука, 1971. 271 с. [Gel'fand, I.M. Lektsii po lineynoy algebre [Lectures on linear algebra]. Nauka, Moscow, 1971. (In Russian)]
- Треногин В.А. Функциональный анализ. М.: Физматлит, 1980. 495 с. [Trenogin, V.A. Funktsional'nyy analiz [Functional analysis]. Fizmatlit, Moscow, 1980. (In Russian)]
- Колмогоров А.Н., Фомин С.С. Элементы теории функций и функционального анализа. М.: Наука, 1976. 542 с. [Kolmogorov, A.N., Fomin, S.S. Elementy teorii funktsiy i funktsional'nogo analiza [Elements of function theory and functional analysis]. Nauka, Moscow, 1976. (In Russian)]
- Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука. 1977. 760 с. [Kantorovich, L.V., Akilov, G.P. Funktsional'nyy analiz [Functional analysis]. Nauka, Moscow, 1977. (In Russian)]
- Гильберт Д., Бернайс П. Основания математики. М.: Наука, 1979. 558 с. [Hilbert, D., Bernays, P. Grundlagen der Mathematik. II, Die Grundlehren der mathematischen Wissenschaften, 50, Berlin, New York: Springer-Verlag.]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2020 Лебедев К.А., Тумаев Е.Н.
This work is licensed under a Creative Commons Attribution 4.0 International License.