Collapse of an axisymmetric cavity during slow movements of a cylinder in a liquid after a separation impact

Authors

UDC

519.634

DOI:

https://doi.org/10.31429/vestnik-21-2-62-69

Abstract

The axisymmetric problem of the vertical and separation impact of a cylinder of finite dimensions under the free surface of an ideal, incompressible, heavy fluid is considered. It is assumed that after the impact the cylinder moves deep into the liquid at a constant speed. An attached cavity is formed behind the body and a new internal free fluid boundary appears. It is required to study the process of cavity collapse at low cylinder speeds, which correspond to small Froude numbers. In the main asymptotic approximation, a problem with one-sided constraints is formulated, on the basis of which the dynamics of the circular separation line and the collapse time of a thin cavity are determined. An asymptotic analysis of the cavity shape is carried out taking into account solutions such as a boundary layer near the separation line. It is shown that at low Froude numbers the internal free boundary approaches the separation line at a right angle.

Keywords:

separation impact of a cylinder, dynamics of the separation zone, cavity collapse, small Froude numbers, boundary layer type solutions

Acknowledgement

The study did not have sponsorship.

Author Info

Mikhail V. Norkin

д-р физ.-мат. наук, доцент, профессор кафедры вычислительной математики и математической физики Южного федерального университета

e-mail: norkinmi@mail.ru

References

  1. Седов, Л.И., Плоские задачи гидродинамики и аэродинамики. Москва, Наука, 1980. [Sedov, L.I., Ploskie zadachi gidrodinamiki i aerodynamiki = Plane problems of hydrodynamics and aerodynamics. Moscow, Nauka, 1980. (in Russian)]
  2. Норкин, М.В., Образование каверны при наклонном отрывном ударе кругового цилиндра под свободной поверхностью тяжелой жидкости. Сибирский журнал индустриальной математики, 2016, т. 19, № 4, с. 81–92. [Norkin, M.V., Cavity formation at the inclined separated impact on a circular sylinder under a free surface of a heavy liquid. Sibirskiy zhurnal industrial'noy matematiki = Journal of Applied and Industrial Mathematics, 2016, vol. 10, no. 4, pp. 538–548. (in Russian)] DOI: 10.1134/S1990478916040104
  3. Норкин, М.В., Динамика точек отрыва при ударе плавающего кругового цилиндра. Прикладная механика и техническая физика, 2019, т. 60, № 5, с.19–27. [Norkin, M.V., Dynamics of separation points upon impact of a floating circular cylinder. Prikladnaya mekhanika i tekhnicheskaya fizika = Journal of Applied Mechanics and Technical Physics, 2019, vol. 60, no. 5, pp. 798–804. (in Russian)] DOI: 10.15372/PMTF20190503
  4. Норкин, М.В., Асимптотика медленных движений прямоугольного цилиндра в жидкости после отрывного удара. Ученые записки Казанского университета. Серия Физико-математические науки, 2020, т. 162, кн. 4, с. 426–440. [Norkin, M.V., Asymptotics of slow motions of a rectangular cylinder in a liquid after a separation impact. Uchenye zapiski Kazanskogo universiteta. Seriya fiziko-matematicheskie nauki = Scientific Notes of Kazan University. Series Physical and Mathematical Sciences, 2020, vol. 162, no. 4, pp. 426–440. (in Russian)] DOI: 10.26907/2541-7746.2020.4.426-440
  5. Reinhard, M, Korobkin, A.A., Cooker, M.J., Cavity formation on the surface of a body entering water with deceleration. Journal of Engineering Mathematics, 2016, vol. 96(1), pp. 155–174. DOI: 10.1007/s10665-015-9788-8
  6. Пегов, В.И., Мошкин, И.Ю., Расчет гидродинамики кавитационного способа старта ракет. Челябинский физико-математический журнал, 2018, т. 3, № 4, с. 476–485. [Pegov, V.I., Moshkin, I.Yu, Analysis of Fluid Dynamics of Cavitational Launch Technique. Chelyabinskiy fiziko-matematicheskiy zhurnal = Chelyabinsk Physical and Mathematical Journal, 2018, vol. 3, no. 4, pp. 476–485. (in Russian)] DOI: 10.24411/2500-0101-2018-13408
  7. Bergant, A., Simpson, A.R., Tijsseling, A.S., Water hammer with column separation: A historical review. Journal of Fluids and Structures, 2006, vol. 22, no. 2, pp. 135–171. DOI: 10.1016/j.jfluidstructs.2005.08.008
  8. Аганин, А.А., Ильгамов, М.А., Мустафин, И.Н., Ударная кавитация жидкости в цилиндрической емкости. Ученые записки Казанского университета. Серия физико-математические науки, 2020, т. 162, кн. 1. c. 27–37. [Aganin, A.A., Ilgamov, M.A., Mustafin, I.N., Impact-induced cavitation in a cylindrical container with liquid. Uchenye zapiski Kazanskogo universiteta. Seriya fiziko-matematicheskie nauki = Scientific Notes of Kazan University. Series Physical and Mathematical Sciences, 2020, vol. 162, no. 1, pp. 27–37. (in Russian)] DOI: 10.26907/2541-7746.2020.1.27-37
  9. Гуревич, М.И., Теория струй идеальной жидкости. Москва, Наука, 1979. [Gurevich, M.I., Teoriya struy ideal'noy zhidkosti = Theory of jets of an ideal fluid. Moscow, Nauka, 1979. (in Russian)]
  10. Иванов, А.Н., Гидродинамика развитых кавитационных течений. Ленинград, Судостроение, 1980. [Ivanov, A.N, Gidrodinamika razvitykh kavitatsionnykh techeniy = Hydrodynamics of developed cavitations flows. Leningrad, Shipbuilding, 1980. (in Russian)]

Issue

Section

Mechanics

Pages

62-69

Submitted

2024-05-27

Published

2024-06-28

How to Cite

Norkin M.V. Collapse of an axisymmetric cavity during slow movements of a cylinder in a liquid after a separation impact. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2024, vol. 21, no. 2, pp. 62-69. DOI: https://doi.org/10.31429/vestnik-21-2-62-69 (In Russian)