Non-stationary longitudinal vibrations of an electromagnetoelastic rod
UDC
593.3DOI:
https://doi.org/10.31429/vestnik-17-2-57-65Abstract
The coupled non-stationary longitudinal vibrations of electromagnetoelastic rods are investigated. It is assumed that the material of the rod is a homogeneous isotropic conductor. The equations used take into account the initial electromagnetic field, the Lorentz force, Maxwell's equations and the generalized Ohm's law. They are obtained as a special case of the corresponding relations for thin electromagnetoelastic shells under the assumption that the desired functions depend only on the longitudinal coordinate.
Two variants of the rods are considered: the infinite rod under the condition that the desired functions are limited and the finite rod with fixed and isolated end cross sections. In the initial electromagnetic field, only the magnetic field strength differs from zero. The solution is presented in integral form with kernels in the form of Green functions. To determine the kernels, the Laplace transform in time and the Fourier transform or trigonometric series in the longitudinal coordinate are used. Explicit forms of solutions are obtained when the transverse compression is ignored and under the conditions of a quasi-static perturbed electromagnetic field. Examples of calculations are provided.
Keywords:
coupled non-stationary electromagnetoelasticity, rod, longitudinal vibrations, Green functions, Laplace transforms, Fourier transforms, trigonometric seriesReferences
- Чиркунов Ю.А. Нелинейные продольные колебания вязкоупругого стержня в модели кельвина // Прикладная математика и механика, 2015, Т. 79. № 5, С. 717–727.
- Жуков И.А. Продольные колебания стержней применительно к ударным системам технологического назначения // Машиностроение и инженерное образование, 2016, № 1, С. 40–49. [Zhukov I.A. Prodolnye kolebaniya sterzhnej primenitelno k udarnym sistemam tekhnologicheskogo naznacheniya [Longitudinal vibrations of the rods as applied to shock systems for technological purposes]. Mashinostroenie i inzhenernoe obrazovanie [Mechanical Engineering and Engineering Education], 2016, no. 1, pp. 40–49. (In Russian)]
- Zhu X., Li L. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity // International Journal of Mechanical Sciences, 2017, vol. 133. pp. 639–650.
- Мардонов Б.М., Рахматов Р., Рахманов А., Тангиров А. Продольные колебания физически нелинейных стерженевых систем // Знание, 2016, № 1 (30), С. 57–60. [Mardonov B.M., Rakhmatov R., Rakhmanov A., Tangirov A. Prodolnye kolebaniya fizicheski nelinejnyh sterzhenevyh sistem [Longitudinal vibrations of physically non-linear rod systems]. Znanie [Knowledge], 2016, no. 1-1 (30), pp. 57–60. (In Russian)]
- Soleimani Roody B., Fotuhi A.R., Jalili M.M. Nonlinear longitudinal forced vibration of a rod undergoing finite strain // Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, vol. 232. № 12, pp. 2229–2243.
- Пожалостин А.А., Паншина А.В. Продольные и крутильные колебания однородных стержней и валов. М.: Методические указания МГТУ им. Н.Э. Баумана, 2016, 36 c. [Pozhalostin A.A., Panshina A.V. Prodolnye i krutilnye kolebaniya odnorodnyh sterzhnej i valov [Longitudinal and torsional vibrations of homogeneous rods and shafts]. M.: MSTU named N.E. Bauman, 2016, 36 p. (In Russian)]
- Томилин А.К., Прокопенко Е.В. Продольные колебания упругого электропроводного стержня в неоднородном магнитном поле // Вестник Томского государственного университета. Математика и механика, 2013, № 1 (21), С. 104–111. [Tomilin A.K., Prokopenko E.V. Prodolnye kolebaniya uprugogo elektroprovodnogo sterzhnya v neodnorodnom magnitnom pole [Longitudinal vibrations of an elastic conductive rod in an inhomogeneous magnetic field]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Bulletin of Tomsk State University. Mathematics and mechanics], 2013, no. 1 (21), pp. 104–111. (In Russian)]
- Сдобников А.Н., Сдобников С.А. Продольные колебания пьезокерамического стержня при возбуждении электрическим полем // Инженерный вестник, 2014.№ 12, С. 38. [Sdobnikov A.N., Sdobnikov S.A. Prodolnye kolebaniya pezokeramicheskogo sterzhnya pri vozbuzhdenii elektricheskim polem [Longitudinal oscillations of a piezoceramic rod when excited by an electric field]. Inzhenernyj vestnik [Engineering Bulletin], 2014, no. 12. p. 38. (In Russian)]
- Chen W.Q., Zhang C.L. Exact analysis of longitudinal vibration of a nonuniform piezoelectric rod // Second International Conference on Smart Materials and Nanotechnology in Engineering 2009, pp. 749307–7, DOI:10.1117/12.840398
- Vestyak V.A., Tarlakovskii D.V. The model of thin electromagnetoelastic shells dynamics // Proceedings of the second international conference on theoretical, Applied and Experimental Mechanics. Structural Integrity. Springer, Nature Switzerland AG, 2019, pp. 254–258.
- Горшков А.Г., Медведский А.Л., Рабинский Л.Н., Тарлаковский Д.В. Волны в сплошных средах. М.: Физматлит, 2004, 472 c. [Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnyh sredah [Waves in continuous media]. M.: Fizmatlit, 2004, 472 p. (In Russian)]
- Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. М.: Наука, 1981 800 с. [Prudnikov A.P., Brychkov Y.A., Marichev O.I. Integraly i ryady [Integrals and series]. – M.: Nauka, 1981, 800 p. (In Russian)]
- Диткин В.А., Прудников А.П. Справочник по операционному исчислению. М.: «Высшая школа», 1965, 467 c. [Ditkin V.A., Prudnikov A.P. Spravochnik po operacionnomu ischisleniyu. [Reference on operational calculus]. M.: «Vysshaya shkola», 1965, 467 p. (In Russian)]
- Абрамовиц М., Стиган И. Справочник по специальным функциям. M.: Наука, 1979, 832 c. [Abramovits M., Stigan I. Spravochnik po specialnym funkciyam [Handbook of special functions]. M.: Nauka, 1979, 832 p. (In Russian)]
- Вестяк В.А., Гачкевич А.Р., Мусий Р.С., Тарлаковский Д.В., Федотенков Г.В. Двумерные нестационарные волны в электроманитоупругих телах. М.: Физматлит, 2019, 288 c. [Vestyak V.A., Gachkevich A.R., Musii R.S., Tarlakovskii D.V., Fedotenkov G.V. Dvumernye nestacionarnye volny v elektromanitouprugih telah [Two-dimensional unsteady waves in electromagnetoelastic bodies]. M.: Fizmatlit, 2019, 288 p.(In Russian)]
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2020 Фам Т.Д., Тарлаковский Д.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.