On calculation of the effective thermal conductivity of textured tribocomposites

Authors

  • Lavrov I.V. National Research University of Electronic Technology, Moscow, Russian Federation
  • Bardushkin V.V. National Research University of Electronic Technology, Moscow, Russian Federation
  • Sychev A.P. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Yakovlev V.B. National Research University of Electronic Technology, Moscow, Russian Federation
  • Kirillov D.A. National Research University of Electronic Technology, Moscow, Russian Federation

UDC

536.2

Abstract

The common operator expression for a tensor of effective thermal conductivity k of the inhomogeneous textured material is derived. Assuming the inhomogeneous material to consist of ellipsoidal grains let us approximate the integral operator by the constant tensor g related with the concrete inclusion and thus obtain the generalized singular approximation for k on the base of the common operator expression. It is shown that in case of coincidence of axes of ellipsoidal inclusion with principal axes of a tensor of thermal conductivity of the comparison medium the components of a tensor g may be expressed through components of a tensor of the generalized geometrical factors of the ellipsoid placed in the anisotropic external medium. The received generalized singular approximation is applied to calculation of a tensor k of the multicomponent textured matrix composite with uniformly oriented inclusions. For a special case of the generalized singular approximation - a self-consistent approximation - the system of equations for finding of the main components of a tensor k of this composite is derived. On the basis of the received system of equations numerical simulation of thermal conducting characteristics of the textured tribocomposite consisting of three components is made: epoxy ED-20 system as a matrix, polytetrafluoroethylene inclusions of spherical shape as an antifriction component and the prolate spheroidal glass inclusions as the reinforcing component. Dependences of the principal components of effective thermal conductivity tensor of this tribocomposite on volume fractions of reinforcing inclusions are given. It is shown what this tribocomposite has anisotropy of thermal-conducting properties, despite isotropic material characteristics of each components. It is also shown that values of the principal components of effective thermal conductivity tensor are less than volume average value of a thermal conductivity.

Keywords:

tensor of effective thermal conductivity, texture, composite, tribocomposite, multicomponent, generalized singular approximation, matrix, ellipsoidal inclusion, self-consistent approximation

Funding information

Работа выполнена при финансовой поддержке грантов РФФИ (16-08-00262-a, 17-08-01374-а).

Author info

  • Igor V. Lavrov

    канд. физ.-мат. наук, доцент кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

  • Vladimir V. Bardushkin

    д-р физ.-мат. наук, профессор кафедр "Высшая математика №2" и "Системная среда качества" Национального исследовательского университета "МИЭТ"

  • Aleksandr P. Sychev

    канд. физ.-мат. наук, заведующий лабораторией транспорта и новых композиционных материалов Южного научного центра РАН

  • Viktor B. Yakovlev

    д-р физ.-мат. наук, профессор РАН, профессор кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

  • Dmitriy A. Kirillov

    аспирант кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

References

  1. Колесников В.И. Теплофизические процессы в металлополимерных трибосистемах. М.: Наука, 2003. 279 с. [Kolesnikov V.I.Teplofizicheskie protsessy v metallopolimernykh tribosistemakh [Thermophysical processes in metal-polymeric tribosystems]. Moscow, Nauka Publ., 2003, 279 p. (In Russian)]
  2. Garnett J.C.M. Colours in metal glasses and in metallic films // Phil. Trans. R. Soc. - London. 1904. Vol. 203. P. 385-420.
  3. Bruggeman D.A.G. Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen // Ann. Phys. - Lpz. 1935. Iss. 24. P. 636-679.
  4. Зарубин В.С., Кувыркин Г.Н., Савельева И.Ю. Эффективная теплопроводность композита в случае отклонений формы включений от шаровой // Математическое моделирование и численные методы. 2014. Вып. 4. С. 3-17. [Zarubin V.S., Kuvyrkin G.N., Savel'eva I.Yu. Effektivnaya teploprovodnost' kompozita v sluchae otkloneniy formy vklyucheniy ot sharovoy [Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones]. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and numerical methods], 2014, no. 4, pp. 3-17. (In Russian)]
  5. Bragg W.L., Pippard A.B. The Form Birefringence of Macromolecules // Acta Cryst. 1953. Vol. 6. No. 11-12. P. 865-867.
  6. Progelhof R.C., Throne J.L., Ruetsch R.R. Methods for Predicting the Thermal Conductivity of Composite Systems: A Review // Polymer Engineering and Science. 1976. Vol. 76. No. 9. P. 615-625.
  7. Pietrak K., Wisniewski T.S. A review of models for effective thermal conductivity of composite materials // J. of Power Technologies. 2015. Vol. 95. No. 1. P. 14-24.
  8. Фокин А.Г. Диэлектрическая проницаемость смесей // Журнал технической физики. 1971. Т. 41. Вып. 6. С. 1073-1079. [Fokin A.G. Dielektricheskaya pronitsaemost' smesey [Dielectric Permittivity of Mixtures]. Zhurnal tekhnicheskoy fiziki [Technical Physics. The Russian Journal of Applied Physics], 1971, vol. 41, no. 6, pp. 1073-1079. (In Russian)]
  9. Шермергор Т.Д. Теория упругости микронеоднородных сред. М.: Наука, 1977. 399 с. [Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Micromechanics of inhomogeneous medium]. Moscow, Nauka Publ., 1977, 399 p. (In Russian)]
  10. Колесников В.И., Яковлев В.Б., Бардушкин В.В., Лавров И.В., Сычев А.П., Яковлева Е.Н. Об объединении методов оценки эффективных диэлектрических характеристик гетерогенных сред на основе обобщенного сингулярного приближения // ДАН. 2013. Т. 452. № 1. С. 27-31. doi: 10.7868/S0869565213260083 [Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. Association of evaluation methods of the effective permittivity of heterogeneous media on the basis of a generalized singular approximation. Doklady Physics, 2013, vol. 58, no. 9, pp. 379-383. doi: 10.1134/S1028335813090012]
  11. Колесников В.И., Яковлев В.Б., Бардушкин В.В., Лавров И.В., Сычев А.П., Яковлева Е.Н. О методе анализа распределений локальных электрических полей в композиционном материале // ДАН. 2016. Т. 467. № 3. С. 275-279. doi: 10.7868/S0869565216090097 [Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. A Method of Analysis of Distributions of Local Electric Fields in Composites. Doklady Physics, 2016, vol. 61, no. 3, pp. 124-128. doi: 10.1134/S1028335816030101]
  12. Гельфанд И.М., Шилов Г.Е. Обобщенные функции и действия над ними. М.: ГИФМЛ, 1958. 440 с. [Gel'fand I.M., Shilov G.E. Obobshchennye funktsii i deystviya nad nimi [Generalized functions. Properties and Operations]. Moscow, GIFML Publ., 1958, 440 p. (In Russian)]
  13. Лавров И.В. Произвольно ориентированный диэлектрический эллипсоид в анизотропной среде: метод неортогонального преобразования пространства // Фундаментальные проблемы радиоэлектронного приборостроения. 2013. Т. 13. № 1. С. 44-47. [Lavrov I.V. Proizvol'no orientirovannyy dielektricheskiy ellipsoid v anizotropnoy srede: metod neortogonal'nogo preobrazovaniya prostranstva [An arbitrarily oriented dielectric ellipsoid in an anisotropic medium: the non-orthogonal space transformation method]. Fundamental'nye problemy radioelektronnogo priborostroeniya [Fundamental problems of radioengineering and device construction], 2013, vol. 13, no. 1, pp. 44-47. (In Russian)]
  14. Физические величины: Справочник / Под ред. И.С. Григорьева, Е.3. Мейлихова. М: Энергоатомиздат, 1991. 1232 с. [Grigor'ev I.S., Meilikhov E.Z. (eds.) Fizicheskie velichiny: Spravochnik [Physical Quantities: A Handbook]. Moscow, Energoatomizdat Publ., 1991, 1232 p. (In Russian)]
  15. Wiener O. Die Theorie des Mischkörpers für das Feld der stationären Strömung // Abh.-Sachs. Geselsch. 1912. B. 32. S. 509-604.

Downloads

Issue

Pages

48-56

Section

Article

Dates

Submitted

April 12, 2017

Accepted

May 3, 2017

Published

June 30, 2017

How to Cite

[1]
Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B., Kirillov, D.A., On calculation of the effective thermal conductivity of textured tribocomposites. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, № 2, pp. 48–56.

Similar Articles

1-10 of 340

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>