Двухэтапная вычислительная схема для моделирования возбуждения упругих колебаний в изотропном слое поверхностным пьезопреобразователем
УДК
539.3DOI:
https://doi.org/10.31429/vestnik-21-1-57-69Аннотация
Рассматривается задача о возбуждении ультразвуковых колебаний пьезоактуатором в изотропном упругом слое. Его динамическое поведение описывается с использованием полуаналитического интегрального подхода, в рамках которого воздействие пьезопреобразователя на волновод учитывается через неизвестную вектор-функцию контактных напряжений. Для ее определения предлагается двухэтапная вычислительная схема, в которой на первом этапе динамическая пространственная контактная задача решается с помощью метода конечных элементов (МКЭ), и из полученного МКЭ-решения берутся смещения в области, совпадающей по форме с областью контакта, но взятой на противоположной стороне волновода. На втором этапе искомые контактные напряжения находятся из решения системы граничных интегральных уравнений, в которых найденные с помощью МКЭ смещения входят в правую часть. Для верификации предложенного подхода приводится сопоставление получаемых на его основе результатов с МКЭ-решениями, а также с экспериментальными данными.
Ключевые слова:
пьезоактуатор, изотропный упругий слой, метод конечных элементов, интегральный подход, бегущие упругие волныФинансирование
Библиографические ссылки
- Farrar, C.R., Worden, K., An introduction to structural health monitoring. Phil. Trans. R. Soc. A., 2006, vol. 365, pp. 303–315. DOI: 10.1098/rsta.2006.1928
- Giurgiutiu, V., Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Columbia, Elsevier Inc., 2014.
- Raghavan, A., Cesnik, E.S., Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Materials and Structures, 2005, vol. 14, pp. 1448–1461. DOI: 10.1088/0964-1726/14/6/037
- Еремин, А.А., Глушков, Е.В., Глушкова, Н.В., Применение пленочных пьезопреобразователей для возбуждения и регистрации бегущих упругих волн в системах активного мониторинга протяженных конструкций. Дефектоскопия, 2020, № 10, с. 24–38. [Eremin, A.A., Glushkov, E.V., Glushkova, N.V., Application of piezoelectric wafer active sensors for elastic guided wave excitation and detection in structural health monitoring systems for elongated constructions. Defektoskopiya = Russian Journal of Nondestructive Testing, 2020, no. 10, pp. 24–38. (in Russian)] DOI: 10.31857/S0130308220100036
- Benmeddour, F., Treyssède, F., Laguerre, L., Numerical modeling of guided wave interaction with non-axisymmetric cracks in elastic cylinders. International Journal of Solids and Structures, 2011, vol. 48, iss. 5, pp. 764-–774. DOI: 10.1016/j.ijsolstr.2010.11.013
- Глушков, Е.В., Глушкова, Н.В., Евдокимов, А.А., Гибридная численно-аналитическая схема для расчета дифракции упругих волн в локально неоднородных волноводах. Акустический журнал, 2018, № 1, с. 3–12. [Glushkov, E.V., Glushkova, N.V., Evdokimov, A.A., Hybrid numerical-analytical scheme for calculating elastic wave diffraction in locally inhomogeneous waveguides. Akusticheskiy zhurnal = Acoustical Physics, 2018, no. 1, pp. 3–12. (in Russian)] DOI: 10.7868/S0320791918010082
- Golub, M.V., Shpak, A.N., Semi-analytical hybrid approach for the simulation of layered waveguide with a partially debonded piezoelectric structure. Applied Mathematical Modelling, 2019, vol. 65, pp. 234–255. DOI: 10.1016/j.apm.2018.08.019
- Ворович, И.И., Бабешко, В.А., Динамические смешанные задачи теории упругости для неклассических тел. Москва, Наука, 1979. [Vorovich, I.I., Babeshko, V.A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh tel = Dynamic mixed problems of the theory of elasticity for non-classical bodies. Moscow, Nauka, 1979. (in Russian)]
- Glushkov, E., Glushkova, N., Kvasha, O., Seemann, W. Integral equation based modeling of the interaction between piezoelectric patch actuators and an elastic substrate. Smart Materials and Structures, 2007, vol. 16, pp. 650–664. DOI: 10.1088/0964-1726/16/3/012
- Sinclair, G.B., Cormier, N.G., Griffin, J.H., Meda, G., Contact stresses in dovetail attachments: finite element modeling. The Journal of Engineering for Gas Turbines and Power, 2002, vol. 124, iss. 1, pp. 182–189. DOI: 10.1115/1.1391429
- Партон, В.З., Кудрявцев, Б.А., Электромагнитоупругость пьезоэлектрических и электропроводных тел. Москва, Наука, 1998. [Parton, V.Z., Kudryavcev, B.A., Electromagnitouprugost piezoelectricheskih i electroprovodnyh tel = Electromagnetoelasticity of piezoelectric and electrically conductive media, Moscow, Nauka, 1998 (in Russian)]
- Свешников, А.Г., Принцип предельного поглощения для волновода. ДАН, 1951, т. 80, № 3, с. 341–344. [Sveshnikov, A.G., The principle of limiting absorption for a waveguide. Doklady Akademii nauk = Report of the Academy of Sciences, 1951, vol. 80, no. 3, pp. 341–344. (in Russian)]
- Бабешко, В.А., Глушков, Е.В., Глушкова, Н.В., Анализ волновых полей, возбуждаемых в упругом стратифицированном полупространстве, поверхностными источниками. Акустический журнал, 1986, т. 32, вып. 3, с. 366–371. [Babeshko, V.A., Glushkov, E.V., Glushkova, N.V., Analysis of wave fields generated in a stratified elastic half-space by surface sources. Sov. Phys. Acoust. (USA), 1986, no. 32(3), pp. 223–226.]
- Глушкова, Н.В., Определение и учет сингулярных составляющих в задачах теории упругости. Диссертация на соискание ученой степени доктора наук, 2000, Ростовский федеральный университет, Ростов-на-Дону, Россия. [Glushkova, N.V., Determination and accounting singular terms in Elasticity. Diss. \ldots Doctor of Sciences, 2000, Rostov State University, Rostov-on-Don, Russia. (in Russian)]
- Глушков, Е.В., Глушкова, Н.В., Варелджан, М.В., Сравнительный анализ эффективности программной реализации полуаналитических методов расчета волновых полей в многослойных анизотропных композитах. Вестник Южно-Уральского государственного университета. Cерия: Математическое моделирование и программирование, 2022, т. 15, вып. 2, с. 56–69. [Glushkov, E.V., Glushkova, N.V., Vareldzhan, M.V., Comparative analysis of software implementation efficiency of the semi-analytical methods for calculating wave fields in multilayer anisotropic composites. Bull. of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software, 2022, vol. 15, no. 2, pp. 56–69. (in Russian)]
- Moulin, E., Assaad, J., Delebarre, C., Osmont, D., Modeling of Lamb waves generated by integrated transducers in composite plates using a coupled finite element–normal modes expansion method. Acoustical Society of America, 2000, vol. 107, iss. 1, pp. 87–94. DOI: 10.1121/1.428294
- Quaegebeur, N., Ostiguy, P-C, Masson, P., Hybrid empirical/analytical modeling of guided wave generation by circular piezoceramics. Smart Materials and Structures, 2015, vol. 24, no. 3. DOI: 10.1088/0964-1726/24/3/035003
- Liu, Y., Fan, H., Yang. J., Analysis of the shear stress transferred from a partially electroded piezoelectric actuator to an elastic substrate. Smart Materials and Structures, 2000, vol. 9, no. 2, pp. 248–254. DOI: 10.1088/0964-1726/9/2/406
- Huang. J., Heng-I, Y., Dynamic electromechanical response of piezoelectric plates as sensors or actuators. Materials Letters, 2000, vol. 46, iss. 2–3, pp. 70–80. DOI: 10.1016/S0167-577X(00)00145-2
- Бабешко, В.А., Глушков, Е.В., Глушкова, Н.В., К проблеме динамических контактных задач в произвольных областях. Известия АН СССР. МТТ, 1978, № 3, с. 61–67. [Babeshko, V.A., Glushkov, E.V., Glushkova, N.V., Dynamic contact problems with arbitrary areas. Izvestiya Akademii Nauk SSSR. Mekhanika tverdogo tela = Bull. of the USSR Academy of Sciences. Solid Mechanics, 1978, no. 3, pp. 61–67. (in Russian)]
- Lowe, M.J.S., Cawley, P., Kao, J-Y., Diligent, O., The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave from a rectangular notch in a plate. The Journal of the Acoustical Society of America, 2010, vol. 112, iss. 6, pp. 2612–2622. DOI: 10.1121/1.1512702
- Ha, S., Lonkar, K., Mittal, A., Chang, F., Adhesive Layer Effects on PZT-induced Lamb Waves at Elevated Temperatures. Structural Health Monitoring, 2010, vol. 9, iss. 3, pp. 247–256. DOI: 10.1177/1475921710365267
- Glushkov, E.V., Glushkova, N.V., Fomenko, S.I., Wave energy transfer in elastic half-spaces with soft interlayers. The Journal of the Acoustical Society of America, 2010, vol. 137, iss. 4, pp. 1802–1812. DOI: 10.1121/1.4916607
- Wilde, M.V., Golub, M.V., Eremin, A.A., Elastodynamic behaviour of laminate structures with soft thin interlayers: theory and experiment. Materials, 2022, vol. 15, iss. 4, no. 1307, pp. 1–32. DOI: 10.3390/ma15041307
Загрузки
Отправлено
Опубликовано
Как цитировать
Copyright (c) 2024 Варелджан М.В.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.