Alternative methods of integrability of nonlinear ordinary differential equations of the first order with polynomial part

Authors

  • Zadorozhnaya O.V. Kalmyk State University, Elista, Russian Federation
  • Kochetkov V.K. Kalmyk State University, Elista, Russian Federation

UDC

517.54

EDN

UPGTXZ

DOI:

10.31429/vestnik-16-2-6-14

Abstract

Alternative methods of integrability of nonlinear ordinary differential equations of the first order with polynomial part. The method of research of integrability of the nonlinear differential equation of the first order with polynomial part, on the basis of introduction of parameters allowing to bring the initial equation to system of the differential equations which ways of integrability are known is developed in work. The equations connecting the parameters and coefficients of the original equation determining the conditions of integrability of the considered differential equation are composed. Integral and algebraic representations of solutions of differential equations are specified. The presented facts are structured by the method of gradualism: first, attention is paid to the equation with the polynomial of the second degree (Riccati equation), examples are given. Then the equation with a polynomial of the third degree is considered. Finally, we investigate a differential equation with a polynomial of any order.

Keywords:

analysis, geometric theory of functions of a complex variable, differential equations

Authors info

  • Olga V. Zadorozhnaya

    канд. пед. наук, доцент кафедры алгебры и анализа Калмыцкого государственного университета им. Б.Б. Городовикова

  • Vladimir K. Kochetkov

    канд. физ.-мат. наук, доцент кафедры алгебры и анализа Калмыцкого государственного университета им. Б.Б. Городовикова

References

  1. Александров И.А. Методы геометрической теории аналитических функции. Томск: Изд-во Том. ун-та, 2001. 220 с. [Aleksandrov, I.A. Metody geometricheskoj teorii analiticheskih funkcii [Methods of geometric theory of analytic function] Tomsk University, Tomks, 2001. (In Russian)]
  2. Деревенский В.П. Полиномиальные дифференциальные уравнения первого порядка над матричными косыми рядами // Изв. вузов. Матем. 2014, № 9. C. 3–16. [Derevenskij, V.P. Polinomial'nye differentsi-al'nye uravneniya pervogo poryadka nad matrichnymi kosymi ryadami [Polynomial differential equation of the first order over matrix skew series]. Izvesia vuzov. Matematika, 2014, no. 9, pp. 3–16. (In Russian)]
  3. Задорожная О.В., Кочетков В.К. Структура интегралов второго дифференциального уравнения Левнера–Куфарева в частном случае // Вестник Том. гос. ун-та. Математика и механика. 2018. № 55. C. 12–21. DOI: 10.17223/19988621/55/2 [Zadorozhnaya, O.V., Kochetkov, V.K. [The structure of the integrals of the second differential equation levner-kufarev in the particular case]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Bulletin of Tomsk State University. Mathematics and Mechanics], 2018, vol. 55, pp. 12–21. (In Russian)]
  4. Матвеев П.Н. Лекции по аналитической теории дифференциальных уравнений: учебное пособие/ П. Н. Матвеев. СПб.: М.: Краснодар: Лань, 2008. 330 с. [Matveev, P.N. Lekcii po analiticheskoj teorii differencial'nyh uravnenij [Lectures on analytical theory of differential equations]. Lan', SPb., Moscow, Krasnodar, 2008. (In Russian)]
  5. Avkhadiev F.G. et al. The main results on sufficient conditions for an analytic function to be schlicht // Russian Mathematical Surveys, 1975 Vol. 30. Iss. 4. P. 1.
  6. Claudine L., Rosler A. Iterated stochastic integrals in infinite dimensions – approximation and error estimares. arXiv: 1709.06961 [math. PR], 2017, 22 p.
  7. Han X, Kloeden P.E. Random ordinary differential equations and their numerical solution. Singapore: Sprimger. 2017, 250 p.
  8. Hastings S.P., McLeod J.B. Classical methods in ordinary differential equations: with applications to boundary value problems. Rhode Island, Amer. Math. Soc., 2011. Vol. 129. 38 p.
  9. Kudryashov N.A. Transcendents defined by nonlinear fourth-order ordinary differential equations // J. Phys. A. Math. and Gen. 1999. Vol. 32. Iss. 6. P. 999–1014.
  10. Platen E. Bruti-Liberati N. Numerical solution differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p.
  11. Kelley W.G., Peterson A.C. The theory of differential equations: classical and qualitative. Springer, 2010. 423 p.

Downloads

Download data is not yet available.

Issue

Pages

6-14

Section

Mathematics

Dates

Submitted

April 28, 2019

Accepted

May 14, 2019

Published

June 28, 2019

How to Cite

[1]
Zadorozhnaya, O.V., Kochetkov, V.K., Alternative methods of integrability of nonlinear ordinary differential equations of the first order with polynomial part. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, т. 16, № 2, pp. 6–14. DOI: 10.31429/vestnik-16-2-6-14

Similar Articles

1-10 of 387

You may also start an advanced similarity search for this article.