Alternative methods of integrability of nonlinear ordinary differential equations of the first order with polynomial part
UDC
517.54EDN
UPGTXZDOI:
10.31429/vestnik-16-2-6-14Abstract
Alternative methods of integrability of nonlinear ordinary differential equations of the first order with polynomial part. The method of research of integrability of the nonlinear differential equation of the first order with polynomial part, on the basis of introduction of parameters allowing to bring the initial equation to system of the differential equations which ways of integrability are known is developed in work. The equations connecting the parameters and coefficients of the original equation determining the conditions of integrability of the considered differential equation are composed. Integral and algebraic representations of solutions of differential equations are specified. The presented facts are structured by the method of gradualism: first, attention is paid to the equation with the polynomial of the second degree (Riccati equation), examples are given. Then the equation with a polynomial of the third degree is considered. Finally, we investigate a differential equation with a polynomial of any order.
Keywords:
analysis, geometric theory of functions of a complex variable, differential equationsReferences
- Александров И.А. Методы геометрической теории аналитических функции. Томск: Изд-во Том. ун-та, 2001. 220 с. [Aleksandrov, I.A. Metody geometricheskoj teorii analiticheskih funkcii [Methods of geometric theory of analytic function] Tomsk University, Tomks, 2001. (In Russian)]
- Деревенский В.П. Полиномиальные дифференциальные уравнения первого порядка над матричными косыми рядами // Изв. вузов. Матем. 2014, № 9. C. 3–16. [Derevenskij, V.P. Polinomial'nye differentsi-al'nye uravneniya pervogo poryadka nad matrichnymi kosymi ryadami [Polynomial differential equation of the first order over matrix skew series]. Izvesia vuzov. Matematika, 2014, no. 9, pp. 3–16. (In Russian)]
- Задорожная О.В., Кочетков В.К. Структура интегралов второго дифференциального уравнения Левнера–Куфарева в частном случае // Вестник Том. гос. ун-та. Математика и механика. 2018. № 55. C. 12–21. DOI: 10.17223/19988621/55/2 [Zadorozhnaya, O.V., Kochetkov, V.K. [The structure of the integrals of the second differential equation levner-kufarev in the particular case]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Bulletin of Tomsk State University. Mathematics and Mechanics], 2018, vol. 55, pp. 12–21. (In Russian)]
- Матвеев П.Н. Лекции по аналитической теории дифференциальных уравнений: учебное пособие/ П. Н. Матвеев. СПб.: М.: Краснодар: Лань, 2008. 330 с. [Matveev, P.N. Lekcii po analiticheskoj teorii differencial'nyh uravnenij [Lectures on analytical theory of differential equations]. Lan', SPb., Moscow, Krasnodar, 2008. (In Russian)]
- Avkhadiev F.G. et al. The main results on sufficient conditions for an analytic function to be schlicht // Russian Mathematical Surveys, 1975 Vol. 30. Iss. 4. P. 1.
- Claudine L., Rosler A. Iterated stochastic integrals in infinite dimensions – approximation and error estimares. arXiv: 1709.06961 [math. PR], 2017, 22 p.
- Han X, Kloeden P.E. Random ordinary differential equations and their numerical solution. Singapore: Sprimger. 2017, 250 p.
- Hastings S.P., McLeod J.B. Classical methods in ordinary differential equations: with applications to boundary value problems. Rhode Island, Amer. Math. Soc., 2011. Vol. 129. 38 p.
- Kudryashov N.A. Transcendents defined by nonlinear fourth-order ordinary differential equations // J. Phys. A. Math. and Gen. 1999. Vol. 32. Iss. 6. P. 999–1014.
- Platen E. Bruti-Liberati N. Numerical solution differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p.
- Kelley W.G., Peterson A.C. The theory of differential equations: classical and qualitative. Springer, 2010. 423 p.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2019 Задорожная О.В., Кочетков В.К.

This work is licensed under a Creative Commons Attribution 4.0 International License.