On an approach to the solution of the coefficient inverse heat conduction problem

Authors

  • Vatulyan A.O. Southern Federal University, Rostov-on-Don, Russian Federation
  • Nesterov S.A. Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences, Vladikavkaz, Republic of North Ossetia - Alania, Russian Federation

UDC

536.24

EDN

ZNDPMI

DOI:

10.31429/vestnik-15-1-50-60

Abstract

In the case of inhomogeneous materials, the thermophysical characteristics cannot be determined experimentally. To determine such characteristics, mathematical methods of identification based on the apparatus of coefficient inverse heat conduction problems are used. The inverse problems of heat conduction are most often solved in an extreme formulation. In this case, as a rule, gradient methods are used to minimize the residual functional. However, such methods have a number of disadvantages. ewline An alternative method for solving the coefficient inverse heat conduction problem for an inhomogeneous rod is proposed. Based on the weak formulation and the linearization method, operator equations are obtained for solving the inverse heat conduction problem. Thermophysical characteristics are restored on the basis of the iteration process, at each stage of which the Fredholm integral equations of the first kind are solved. The direct problem of thermal conductivity for a rod is solved by the method of reduction to the integral Fredholm equation of the second kind. ewline The initial approximation in the iterative process was determined in two ways in the class of positive bounded linear functions. The first method is based on the use of a priori information on the boundaries of the change in thermophysical characteristics. The second method is based on the use of the Galerkin projection method. A comparative analysis of the methods for finding the initial approximation is carried out. Computational experiments on restoring various laws of change in thermophysical characteristics were carried out. It was found out that the reconstruction procedure is resistant to noisy input information.

Keywords:

non-uniform rod, iterative process, initial approximation, projection method, integral equations

Funding information

Работа выполнена при поддержке Южного математического института - филиала ВНЦ РАН, г. Владикавказ.

Authors info

  • Aleksandr O. Vatulyan

    д-р физ.-мат. наук, профессор, заведующий кафедрой теории упругости Института математики, механики и компьютерных наук им. И.И. Воровича Южного федерального университета

  • Sergey A. Nesterov

    канд. физ.-мат. наук, старший научный сотрудник отдела дифференциальных уравнений Южного математического института - филиал Владикавказского научного центра РАН

References

  1. Алифанов О.М., Артюхин Е.А., Румянцев С.В. Экстремальные методы решения некорректных задач. М.: Наука, 1988. 288 с. [Alifanov, O.M., Artukhin, O.M., Rumyantsev, S.V. Extreme methods for solving ill-posed problems. Nauka, Moscow, 1988. (In Russian)]
  2. Денисов А.М. Введение в теорию обратных задач. М.: МГУ, 1994. 206 с. [Denisov, A.M. Introduction to the theory of inverse problems. MSU, Moscow, 1994. (In Russian)]
  3. Ватульян А.О. Обратные задачи в механике деформируемого твердого тела. М.: Физматлит, 2007. 224 с. [Vatulyan, A.O. Inverse problems in mechanics of deformable solids. Fizmatlit, Moscow, 2007. (In Russian)]
  4. Kravaris C., Seinfeld J.H. Identification of spatially varying parameters in distributed parameters systems by discrete regularization // Journal of Math. Analysis and Applications. 1986. Vol. 119. P. 128-152. DOI: 10.1137/0323017
  5. Chen W.L., Chou H.M., Yang Y.C. An inverse problem in estimating the space - dependent thermal conductivity of a functionally graded hollow cylinder // Composites: Part B. 2013. Vol. 50. P. 112-119.
  6. Kabanikhin S.I., Hasanov A., Penenko A.V. A gradient descent method for solving an inverse coefficient heat conduction problem // Numerical Anal. Appl. 2008. No. 1. P. 34-45. DOI: 10.1134/S1995423908010047
  7. Hao D.N. Methods for inverse heat conduction problems. Frankfurt/Main: Peter Lang Pub. Inc. 1998. 249 p.
  8. Isakov V., Bindermann S. Identification of the diffusion coefficient in a one dimensional parabolic equation // Inverse Problems. 2000. No. 6. P. 665-680.
  9. Raudensky M., Woodbary K.A., Kral J. Genetic algorithm in solution of inverse heat conduction problems // Num Heat transfer B. 1995. Vol. 28. P. 293-306.
  10. Danilaev P.G. Coefficient inverse problems for parabolic type equations and their applications. Utrecht, Boston, Koln, Tokyo: VSP. 2001. 115 p.
  11. Lam T.T., Yeeng W.K. Inverse determination of thermal conductivity for one-dimensional problems // J. Themophys. Heat Transf. 1995. Vol. 9. No 2. P. 335-342.
  12. Xu M.H., Cheng J.C., Chang S.Y. Reconstruction theory of the thermal conductivity depth profiles by the modulated photo reflectance technique // J. Appl. Phys. 2004. Vol. 84. No. 2. P. 675-682.
  13. Ватульян А.О., Нестеров С.А. Об одном способе идентификации термоупругих характеристик для неоднородных тел // Инженерно-физический журнал. 2014. Т. 87. №1. С. 217-224. [Vatul'yan, A.O., Nesterov, S.A. A Method of Identifying Thermoelastic Characteristics for Inhomogeneous Bodies. J. of Engineering Physics and Thermophysics, vol. 87, no. 1, pp. 225-232 (2014). DOI: 10.1007/s10891-014-1004-6]
  14. Nedin R., Nesterov S., Vatulyan A. On an inverse problem for inhomogeneous thermoelastic rod // Int. J. of Solids and Structures. 2014. Vol. 51. No 3. P. 767-773. DOI: 10.1016/j.ijsolstr.2013.11.003
  15. Nedin R., Nesterov S., Vatulyan A. On reconstruction of thermalphysic characteristics of functionally graded hollow cylinder // Appl. Mathematical Modelling. 2016. Vol. 40. Iss. 4. P. 2711-2719. DOI: 10.1016/j.apm.2015.09.078
  16. Nedin R., Nesterov S., Vatulyan A. Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials // Int. Journal of Heat and Mass transfer. 2016. Vol. 102. P. 213-218. DOI: 10.1016/j.ijheatmasstransfer.2016.06.027
  17. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990. 230 с. [Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G. Numerical methods for solving ill-posed problems. Nauka, Moscow, 1990. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

50-60

Section

Physics

Dates

Submitted

January 29, 2018

Accepted

February 4, 2018

Published

March 19, 2018

How to Cite

[1]
Vatulyan, A.O., Nesterov, S.A., On an approach to the solution of the coefficient inverse heat conduction problem. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 1, pp. 50–60. DOI: 10.31429/vestnik-15-1-50-60

Similar Articles

1-10 of 485

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>