Нелинейная связь между током и напряжением в допированных никелем лантан-стронциевых поликристаллических манганитах
УДК
538.91+537.311.3DOI:
https://doi.org/10.31429/vestnik-19-1-75-81Аннотация
Синтезированные манганиты La3+0,81+xSr2+0,19-xMn3+0,81-xMn4+0,19Ni2+xO2-3 (x = 0,100; 0,125) имеют ромбоэдрическую структуру, являются ферромагнитными с точками Кюри 216 и 181 К, соответственно, и проявляют полупроводниковый характер проводимости в интервале температур 110–200 К. Манганит с содержанием никеля 0,100 ф.е. при T = 112 K обладает N-образной вольтамперной характеристикой (ВАХ).
У манганита La0,935Sr0,065Mn0,875Ni0,125O3 при 122 К впервые обнаружена ВАХ с двумя участками отрицательного дифференциального сопротивления разного вида, на которых dU < 0 при dI > 0 и dI < 0 при dU > 0. В области температур 132–172 К этот манганит обладает S-образными ВАХ.
Полученные экспериментальные данные объясняются конкурирующими эффектами локального саморазогрева образцов и изменения параметров зонной структуры манганита при повышении напряжения с учетом роли микронеоднородностей, возможности образования токовых каналов и туннелирования носителей заряда между областями с различной плотностью состояний.
Ключевые слова:
ромбоэдрическая структура, точка Кюри, полупроводники, вольтамперные характеристики N- и S-типа, два различных участка отрицательного дифференциального сопротивленияБиблиографические ссылки
- Belich N., Udalova N., Semenova A., Petrov A., Fateev S., Tarasov A., Goodilin E. Perovskite puzzle for revolutionary functional materials. Front. Chem., 2020, vol. 8, p. 550625. DOI 10.3389/fchem.2020.550625
- Bebenin N.G., Zainullina R.I., Ustinov V.V. Colossal magnetoresistance manganites. Physics-Uspekhi, 2018, vol. 61, iss. 8, pp. 719–738. DOI 10.3367/UFNe.2017.07.038180
- Dagotto E. Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates. New J. of Phys., 2005, vol. 7 DOI 10.1088/1367-2630/7/1/067
- Guha A., Khare N., Raychaudhuri A.K., Rao C.N.R. Magnetic field resulting from nonlinear electrical transport in single crystals of charge-ordered Pr0.63Ca0.37MnO3. Phys. Rev. B, 2000, vol. 62, p. R11941(R). DOI 10.1103/PhysRevB.62.R11941
- Kamilov I.K., Aliev K.M., Ibragimov Kh.O., Abakarova N.S. N-shaped voltage-current characteristic and current oscillations in Sm1-xSrxMnO3 manganite. JETP Lett. 2003, vol. 78, pp. 485–487. DOI 10.1134/1.1637699
- Karpasyuk V.K., Badelin A.G., Smirnov A.M., Sorokin V.V., Evseeva A., Doyutova E., Shchepetkin A.A. N-type current-voltage characteristics of manganites. J. Phys. Conf. Ser., 2010, vol. 200, p. 052026. DOI 10.1088/1742-6596/200/5/052026
- Abdel-Latif I.A. Rare earth manganites and their applications. J. Phys., 2012, vol. 1, iss. 3, pp. 15–31.
- Koroleva L.I., Demin R.V., Kozlov A.V., Zashchirinskii D.M., Mukovskii Ya.M. Relation between giant volume magnetostriction, colossal magnetoresistance, and crystal lattice softening in manganites La1-xAyMnO3 (A = Ca, Ag, Ba, Sr). J. Exp. Theor. Phys., 2007, vol. 104, iss. 1, pp. 76–86.
- Karpasyuk V.K., Badelin A.G., Derzhavin I.M., Merkulov D.I. Systems of manganites with enhanced electromagnetic parameters. Inorg. Mater. Appl. Res., 2018, vol. 9, iss. 5, pp. 807–812. DOI 10.1134/S2075113318020132
- Koroleva L.I., Morozov A.S., Zhakina E.S., Batashev I.K., Balbashov A.M. A new method of increasing thermopower in doped manganites. Tech. Phys. Lett., 2016, vol. 42, pp. 652–655. DOI 10.1134/S1063785016060237
- Karpasyuk V., Smirnov A., Badelin A. Ceramic manganites with contacts of various metals in magnetic field sensors. World Appl. Sci. J., 2014, vol. 32, iss. 10, pp. 2028–2031. DOI 10.5829/idosi.wasj.2014.32.10.1295
- Volkov N.V. Spintronics: manganite-based magnetic tunnel structures. Physics-Uspekhi, 2012, vol. 55, iss. 3, pp. 250–269. DOI 10.3367/UFNe.0182.201203b.0263
- Wu X.D., Suzuki K., Cochrane J., Markovich V., Gorodetsky G. Effect of electrical current on magnetic and transport properties of single-crystalline La0.82Ca0.18MnO3. IEEE Trans. Magn., 2010, vol. 46, iss. 6, pp. 1705–1707. DOI 10.1109/TMAG.2010.2044755
- Fisher B., Genossar J., Patlagan L., Reisner G.M. Electric-field effects in resistive oxides: facts and artifacts. EPJ Web of Conf., 2013, vol. 40, p. 15009. DOI 10.1051/epjconf/20134015009
- Shaykhutdinov K.A., Popkov S.I., Balaev D.A., Semenov S.V., Bykov A.A., Dubrovskiy A.A., Sapronova N.V., Volkov N.V. Non-linear current–voltage characteristics of (La0.5Eu0.5)0.7Pb0.3MnO3 single crystals: Possible manifestation of the internal heating of chargecarriers. Phys. B: Condens. Matter., 2010, vol. 405, iss. 24, pp. 4961–4965. DOI 10.1016/j.physb.2010.09.043
- Tulina N.A., Uspenskaya L.S., Sirotkin V.V., Mukovskii Y.M., Shulyatev D.A. Intrinsic inhomogeneities and effects of resistive switching in doped manganites. Phys. C: Supercond. Appl., 2006, vol. 444, iss. 1–2, pp. 19–22. DOI 10.1016/j.physc.2006.05.081
- Povzner A.A., Volkov A.G. Influence of voltage on magnetization of ferromagnetic semiconductors with colossal magnetoresistance. J. Magn. Magn. Mater., 2017, vol. 432, pp. 466–471. DOI 10.1016/j.jmmm.2017.01.104
- Moshnyaga V., Gehrke K., Lebedev O.I., Sudheendra L., Belenchuk A., Raabe S., Shapoval O., Verbeeck J., Tendeloo G. Van, Samwer K. Electrical nonlinearity in colossal magnetoresistance manganite films: Relevance of correlated polarons. Phys. Rev. B, 2009, vol. 79, p. 134413. DOI 10.1103/PhysRevB.79.134413
- Kowalik M., Tokarz W., Kolodziejczyk A. Electronic Band Structures of La2/3Pb1/3Mn2/3(Fe,Co,Ni)1/3O3. Acta Phys. Pol. A, 2015, vol. 127, pp. 251–253. DOI 10.12693/APhysPolA.127.251
Загрузки
Отправлено
Опубликовано
Как цитировать
Copyright (c) 2022 Баделин А.Г., Бич Г.В., Карпасюк В.К., Шапошников П.А., Эстемирова С.Х.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.