Electrophoresis of microparticle with hydrophobic surface in strong electric field

Authors

  • Frants E.A. Financial University under the Government of the Russian Federation, Krasnodar, Russian Federation
  • Krylov A.A. Kuban State University, Krasnodar, Russian Federation
  • Demekhin E.A. Financial University under the Government of the Russian Federation, Krasnodar; Lomonosov Moscow State University, Moscow, Russian Federation

UDC

532.5.013:532.516:538.5:544.6

DOI:

https://doi.org/10.31429/vestnik-21-2-80-92

Abstract

The study addresses the problem of electrophoresis of a dielectric particle with a hydrophobic surface. A complete dimensional formulation of the problem is presented, followed by a transition to a dimensionless formulation. The main method of investigation is the analytical solution of the problem, conducted separately for the electrical and the hydrodynamic components. The primary task was to derive a relationship for the electrophoresis velocity of the micro-particle with a hydrophobic surface based on key parameters of the problem: the intensity of the external electric field E, the slip length β, the surface charge density σ, the Debye number ν, and the ratio of the dielectric permittivities of the particle and the medium δ. Additionally, the study includes a comparison of the analytically obtained electrophoresis velocity of the hydrophobic particle with the results of numerical modeling of electrophoresis of a dielectric particle and an assessment of the contribution of the slip length parameter to the increase in electrophoresis velocity. The influence of the parameters σ and δ on the electrophoresis velocity is also demonstrated separately.

Keywords:

electrophoresis, hydrophobic surface, sliding speed, high electric field

Funding information

This work was supported by the Russian Science Foundation (project No. 22-79-00082).

Author info

  • Elizaveta A. Frants

    канд. физ.-мат. наук, младший научный сотрудник лаборатории электро- и гидродинамики микро- и наномасштабов, Финансовый университет при Правительстве РФ

  • Artem A. Krylov

    студент факультета компьютерных технологий и прикладной математики Кубанского государственного университета

  • Evgeny A. Demekhin

    д-р. физ.-мат. наук, заведующий лабораторией электро- и гидродинамики микро- и наномасштабов, Финансовый университет при Правительстве РФ

References

  1. Stone, H.A., Stroock, A., Ajdari, A., Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., 2004, vol. 36, pp. 381–411.
  2. Squires, T.M., Quake, S., Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, vol. 77, p. 977. DOI: 10.1103/RevModPhys.77.977
  3. Lauga, E., Brenner, M.P., Stone, H.A., Microfluidics: The no-slip boundary condition. In: Tropea, C., Yarin, A., Foss, J.F. (eds), Handbook of Experimental Fluid Dynamics. Springer, New York, 2007, pp. 1219–1240. DOI: 10.1007/978-3-540-30299-519
  4. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.-J., Craig, V.S.J., Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys., 2005, vol. 68, p. 2859. DOI: 10.1088/0034-4885/68/12/R05
  5. Vinogradova, O., Slippage of water over hydrophobic surfaces. Int. J. Min. Process., 1999, vol 56, pp. 31–60. DOI: 10.1016/S0301-7516(98)00041-6
  6. Churaev, N.V., Ralston, J., Sergeeva, I.P., Sobolev, V.D., Electrokinetic properties of methylated quartz capillaries. Adv. Colloid Interface Sci., 2002б vol. 96, p. 265. DOI: 10.1016/s0001-8686(01)00084-7
  7. Bouzigues, C.I., Tabeling, P., Bocquet, L., Nanofluidics in the Debye Layer at Hydrophilic and Hydrophobic Surfaces. Phys. Rev. Lett., 2008, vol. 101, art. 114503. DOI: 10.1103/PhysRevLett.101.114503
  8. Ajdari, A., Bocquet, L., Giant Amplification of Interfacially Driven Transport by Hydrodynamic Slip: Diffusio-Osmosis and Beyond. Phys. Rev. Lett., 2006, vol. 96, art. 186102. DOI: 10.1103/PhysRevLett.96.186102
  9. Khair, A.S., Squires, T.M., The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Physics of Fluids, 2009, vol. 21, art. 042001. DOI: 10.1063/1.3116664
  10. O'Brien, R.W., White, L.R., Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc., Faraday Trans. 2, 1978, vol. 74, pp. 1607–1626. DOI: 10.1039/F29787401607
  11. Park, H.M., Electrophoresis of particles with Navier velocity slip. Electrophoresis, 2013, vol. 34, p. 651–661. DOI: 10.1002/elps.201200484
  12. Bentor, J., Dort, H., Chitrao, R.A., Zhang, Y., Xuan, X., Nonlinear electrophoresis of dielectric particles in Newtonian fluids. Electrophoresis, 2023, vol. 44, iss. 11–12, pp. 938–946. DOI: 10.1002/elps.202200213
  13. Frants, E., Amiroudine, S. Demekhin, E., DNS of Nonlinear Electrophoresis. Microgravity Sci. Technol., 2024, vol. 36, iss. 21. DOI: 10.1007/s12217-024-10108-w

Downloads

Issue

Pages

80-92

Section

Physics

Dates

Submitted

May 12, 2024

Accepted

May 18, 2024

Published

June 28, 2024

How to Cite

[1]
Frants, E.A., Krylov, A.A., Demekhin, E.A., Electrophoresis of microparticle with hydrophobic surface in strong electric field. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2024, т. 21, № 2, pp. 80–92. DOI: 10.31429/vestnik-21-2-80-92

Similar Articles

1-10 of 128

You may also start an advanced similarity search for this article.