Bank reliability forecasting using classification trees

Authors

  • Kirillov K.V. Kuban State University, Krasnodar, Russian Federation
  • Halafyan A.A. Kuban State University, Krasnodar, Russian Federation

UDC

519.22:336.144.36

EDN

REQTWL

Abstract

The authors use the methods of classification analysis to forecast the reliability of banks. The classification trees, which use balance sheet items with the smallest binary correlation as attributes, are made. Special aspects of modelling trees for the group of banks under consideration are described, as well as those of the formation of training and testing samples and selection of criteria for truncating of branches. The model developed was tested on real data. Financial condition of 557 Russian banks was analysed based on the data for 2008, when a significant increase in the number of bankruptcy was recorded.

Keywords:

classification trees, training and testing sample, logical derivation, truncation criterium

Authors info

  • Kirill V. Kirillov

    аспирант кафедры прикладной математики Кубанского государственного университета

  • Aleksan A. Halafyan

    д-р техн. наук, профессор кафедры прикладной математики Кубанского государственного университета

References

  1. Argenti J. Corporate Collapse // England: McGraw-Hill, 1976. 193 p.
  2. Bryant S.M. A case-based reasoning approach to bankruptcy prediction modeling. Intelligent Systems in Accounting // Finance and Management. 1997. Vol. 6. P. 195-214.
  3. Curram S.P., Mingers J. Neural networks, decision trees induction and discriminant analysis: An empirical comparison// Journal of the Operational Research Society. 1994. Vol. 45. No. 4. P. 440-450.
  4. Elhadi M.T., Vamos T. An IR-CBR approach to legal indexing and retrieval in bankruptcy law // In Tenth proceedings in database and expert systems applications. 1999. P. 769-774.
  5. Jo H., Han I., Lee H. Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis // Expert Systems with Applications. 1997. Vol. 13. No. 2. P. 97-108.
  6. Park C., Han I. A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction // Expert Systems with Applications. 2000. Vol. 23. No. 3. P. 255-264.
  7. Atiya A.F. Bankruptcy prediction for credit risk using neural networks: A survey and new results // IEEE Transactions on Neural Networks. 2001. Vol. 12. No. 4. P. 929-935.
  8. Baek J., Cho S. Bankruptcy prediction for credit risk using an autoassociative neural network in Korean firms // In IEEE international conference on computational intelligence for financial engineering. 2003. P. 25-29.
  9. Nasir M.L., John R.I., Bennett S.C. Predicting corporate bankruptcy using modular neural networks // In IEEE international conference on computational intelligence for financial engineering. 2000. P. 86-91.
  10. Chen M.-Y. Predicting corporate financial distress based on integration of decision tree classification and logistic regression // Expert Systems with Applications. 2011. Vol. 38. P. 11261-11272.
  11. Pang Su-lin, Gong Ji-zhang C5.0 Classification Algorithm and Application on Individual Credit Evaluation of Banks // Systems Engineering - Theory & Practice. 2009. Vol. 29. Iss. 12. P. 94-102.
  12. Кириллов К.В. Анализ деятельности банка с помощью факторного анализа // Международная молодежная научно-практическая конференция "Математическое моделирование в экономике, страховании и управлении рисками". 05-08 ноября 2013, г. Саратов (принято в печать).
  13. Халафян А.А. STATISTICA 6. Математическая статистика с элементами теории вероятностей: учебник // Москва: Издательство Бином. 2011. 496 с.
  14. Пелипенко Е.Ю., Халафян А.А. Оценка платежеспособности предприятия на основе метода "деревья классификации" // Современные тенденции в экономике и управлении: новый взгляд: сборник материалов III Международной научно-практической конференции: в 2-х частях. Ч. 2. 2010. С. 34-39.
  15. Breiman L., Friedman J.H., Olshen R.A., Stone C.T. Classification and Regression Trees // Wadsworth, Belmont, California, 1984. 368 p.

Downloads

Download data is not yet available.

Issue

Pages

61-66

Section

Article

Dates

Submitted

September 11, 2013

Accepted

September 16, 2013

Published

September 23, 2013

How to Cite

[1]
Kirillov, K.V., Halafyan, A.A., Bank reliability forecasting using classification trees. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2013, № 3, pp. 61–66.

Similar Articles

1-10 of 1091

You may also start an advanced similarity search for this article.