Electrokinetic effects near the space-inhomogeneous electroactive surfaces
UDC
537.6Abstract
This manuscript considers the model of non-homogeneous membrane having alternating conductive and non-conductive areas. Numerically investigated the hydrodynamics near a membrane under the influence of an external electric field. The effect on the system two mechanisms — Dukhina vortex formation and Rubinstein-Saltzman. It is shown that the predominant mechanism Dukhina except for a narrow region of potential difference values. It was found that for a small amount of non-conductive areas and the main contribution of the system impedance makes the electrolyte resistance, and at large - the conductivity of the membrane. Detected a pronounced maximum current through the membrane, depending on the coverage ratio, where the current intensification can reach 60%.
Keywords:
system Nernst-Planck-Poisson-Stokes, heterogeneous membrane, overlimiting current, electrokinetic instability, electrolyteFunding information
Работа выполнена при поддержке РФФИ (15-58-45123-Инд_а, 14-08-01171_а).
References
- Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. Vol. 44. P. 401-426.
- Belova E. I., Lopatkova G. Yu., Pismenskaya N. D., Nikonenko V. V., Larchet C., Pourcelly G. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer // J. Phys. Chem. B. 2006. Vol. 110. P. 13458-13469.
- Slouka Z., Senapati S., Yan Yu., Chang H.-C. Charge inversion, water splitting and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures // Langmuir. 2013. Vol. 29. P. 8275-8283.
- Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane // Phys. Rev. E. 2000. Vol. 62. P. 2238.
- Rubinstein I., Zaltzman B. Electro-osmotic slip and electroconvective instability // J. Fluid Mech. 2007. Vol. 579. P. 173.
- Демёхин Е.А., Шапарь Е.М., Лапченко В.В. К возникновению электроконвекции в полупроницаемых электрических мембранах // ДАН. 2008. Т. 421. № 4. С. 478-481. [Demekhin E.A., Shapar' E.M., Lapchenko V.V. K vozniknoveniyu elektrokonvektsii v polupronitsaemykh elektricheskikh membranakh [To the emergence of electroconvection in semipermeable electric membranes]. Doklady akademii nauk [Rep. of the Academy of Sciences], 2008, vol. 421, no. 4, pp. 478-481. (In Russian)]
- Demekhin E. A., Shelistov V. S., Polyanskikh S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability // Phys. Rev. E. 2011. Vol. 84. P. 036318.
- Demekhin E.A., Nikitin N.V., Shelistov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion // Phys. Fluids. 2013. Vol. 25. No. 6. P. 12201(1-29).
- Demekhin E.A., Nikitin N.V., Shelistov V.S. Three-dimensional coherent structures of electrokinetic instability // Phys. Rev. E. 2014. Vol. 90. No. 1. P. 013031(1-9).
- Dukhin S.S. Electrokinetic phenomena of the second kind and their applications? // Adv. Colloid Interface Sci. 1991. Vol. 35. P. 173-196.
- Chang H.-C., Demekhin E.A., Shelistov V.S. Competition between Dukhin's and Rubinstein's electrokinetic modes // Phys. Rev. E. 2012. Vol. 86. P. 046319.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2016 Кирий В.А., Калайдин Е.Н.
This work is licensed under a Creative Commons Attribution 4.0 International License.