Seiche oscillations in a partially enclosed basin
UDC
532.59 + 551.466EDN
ZHLAJHAbstract
The study of seiche oscillations in the open entrance basins is an important applied problem. Even relatively small level fluctuations caused by seiches can be accompanied by strong horisontal flows which impede navigation and are dangerous for moored ships. In this work within the framework of the linear shallow water theory the seiche oscillations are studied in a rectangular basin of constant depth. The analytical solution is obtained for the case of the nodal level line location at the entrance to the basin. The structures of the seiche oscillations is compared for closed and partially closed basins. Their similarities and differences are revealed. It is established that the seiche oscillation periods in a basin with an open entrance are always smaller than the periods of the corresponding modes in same dimensions and depth closed basin. It is shown that the transverse seiches have a two-dimensional structure in open entrance basin. Their wave flows velocities depend on the horizontal dimensions and depth of the basin. In a closed basin, the wave flows of transverse seiches are one-dimensional, their magnitude does not depend on the horizontal dimensions of the basin and is inversely proportional to the square root of the basin depth. In the open entrance basin nodal level lines of the longitudinal seiches are shifted from basin entrance as compared to the nodal lines in a closed basin. The lower mode of the seiche in the open entrance basin is the Helmholtz mode. The wave flow for the Helmholtz mode is always directed perpendicularly to the entrance to the basin and its maximum velocity does not depend on the width and length of the basin. It is directly proportional the initial deviation amplitude of the free surface and inversely proportional to the square root of the basin depth. The greatest velocities of the flows take place at the open boundary of the basin.The estimates of seiche periods and wave flow velocities are obtained for the Akhtarskiy frith (the Azov Sea).
Keywords:
seiches, free waves, long waves, wave flows, open entrance basin, partially enclosed basin, Helmholtz mode, analytical solutions, Azov Sea, Akhtarskiy frithFunding information
Работа выполнена в рамках государственного задания по теме № 0827-2014-0010 "Комплексные междисциплинарные исследования океанологических процессов, определяющих функционирование и эволюцию экосистем Черного и Азовского морей на основе современных методов контроля состояния морской среды и грид-технологий".
References
- Лабзовский Н.А. Непериодические колебания уровня моря. Л.: Гидрометеорологическое издательство, 1971. 238 с. [Labzovskiy N.A. Neperiodicheskie kolebaniya urovnya moray [Non-periodic sea level fluctuations]. Leningrad, Gidrometeorologicheskoe izdatelstvo Publ., 1971. 238 p. (In Russian)]
- Океанографическая энциклопедия. Л.: Гидрометеоиздат, 1980. 304 с. [Okeanograficheskaya entsiklopediya. [Oceanographic encyclopedia]. Leningrad, Gidrometeoizdat Publ., 1980. 304 p. (In Russian)]
- Rabinovich A.B. Seiches and Harbor Oscillations (Chapter 9) / In "Handbook of Coastal and Ocean Engineering" / Ed. Y.C. Kim. Singapoure: World Scientific Publ., 2009. P. 193-236.
- Advances in Hydrosciences / Ed. Ven Te Chow. New York and London: Academic Press, 1972. Vol. 8. 359 p.
- Manilyuk Yu.V., Cherkesov L.V. The influence of the gulf's geometry on seiche oscillations in an enclosed basin // Physical oceanography. 1997. Vol. 8, No. 4. P. 217-227.
- Железняк М.И., Кантаржи И.Г., Сорокин М.В., Поляков А.И. Резонансные характеристики акваторий морских портов // Инженерно-строительный журнал. 2015. № 5(57). С. 3-19. [ZHeleznyak M.I., Kantarzhi I.G., Sorokin M.V., Polyakov A.I. Rezonansnye harakteristiki akvatorij morskih portov [Resonance properties of seaport water areas]. Inzhenerno-stroitel'nyj zhurnal [Magazine of Civil Engineering], 2015, no. 5(57), pp. 3-19. DOI: 10.5862/MCE.57.1 (In Russian).]
- Ковалев Д.П. Натурные эксперименты и мониторинг инфрагравитационных волн для диагностики опасных морских явлений в прибрежной зоне на примере акваторий Сахалино-Курильского региона. Дисс. … д-ра физ.-мат. наук. Южно-Сахалинск, 2015. 304 с. [Kovalev D.P. Naturnye ehksperimenty i monitoring infragravitacionnyh voln dlya diagnostiki opasnyh morskih yavlenij v pribrezhnoj zone na primere akvatorij Sahalino-Kuril'skogo regiona [Natural experiments and monitoring of infra-gravity waves for the diagnostics of dangerous marine phenomena in the coastal zone by the example of the water areas of the Sakhalin-Kuril region]. Diss. Dr. phys. and math. sci. YUzhno-Sahalinsk, 2015. 304 p. (In Russian).]
- Зырянов В.Н., Чебанова М.К. Гидродинамические эффекты при вхождении приливных волн в эстуарии // Водные ресурсы. 2016. Т. 43, № 4. С. 379-386. [Zyryanov V.N., Chebanova M.K. Gidrodinamicheskie effektyi pri vhozhdenii prilivnyih voln v estuarii [Hydrodynamic effects at the entry of tidal waves into estuaries]. Vodnyie resursyi [Water Resources], 2016, vol. 43, no. 4, pp. 379-386. DOI: 10.1134/S0097807816040187. (In Russian).]
- Черкесов Л.В., Иванов В.А., Хартиев С.М. Введение в гидродинамику волн. Санкт-Петербург.: Гидрометеоиздат, 1992. 264 с. [Cherkesov L.V., Ivanov V.A., Hartiev S.M. Vvedenie v gidrodinamiku voln [Introduction to hydrodynamics and wave theory]. Sankt-Peterburg.: Gidrometeoizdat Publ., 1992. 264 p. (In Russian).]
- Рабинович Б.И, Левянт А.С. Численное решение задачи расчета сейш на основе RT-алгоритма конформного отображения // Природные катастрофы и стихийные бедствия в Дальневосточном регионе. 1990. Т. 2. С. 328-342. [Rabinovich B.I, Levyant A.S. Chislennoe reshenie zadachi rascheta sejsh na osnove RT-algoritma konformnogo otobrazheniya [Numerical solution of the problem of seiche calculation based on RT-algorithm of conformal mapping]. Prirodnye katastrofy i stihijnye bedstviya v Dal'nevostochnom regione [Natural disasters and natural disasters in the Far East region], 1990, vol. 2, pp. 328-342. (In Russian).]
- Рабинович А.Б. Длинные гравитационные волны в океане: захват, резонанс, излучение. СПб.: Гидрометеоиздат, 1993. 325 с. [Rabinovich A.B. Dlinnyie gravitatsionnyie volnyi v okeane [Long ocean gravity waves: trapping, resonance, leaking]. S.-Peterburg, Gidrometeoizdat Publ., 1993. 325 p. (In Russian).]
- Владимиров В.С. Уравнения математической физики. М.: Наука, 1981. 512 с. [Vladimirov V.S. Uravneniya matematicheskoj fiziki [Equations of mathematical physics.]. Moscow, Nauka Publ., 1981. 512 p. (In Russian).]
- Праудмен Дж. Динамическая океанография. М.: Иностранная литература, 1957. 418 с. [Proudmen J. Dinamicheskaya okeanografiya [Dynamical oceanography]. Moscow, Inostrannaya literatura Publ., 1957. 418 p. (In Russian).]
- Manilyuk Yu.V., Cherkesov L.V. Investigation of Free Liquid Oscillations in a Bounded Basin Representing an Approximate Model of the Sea of Azov // Physical oceanography. 2016. Vol. 2. P. 14-23.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2017 Манилюк Ю.В., Фомин В.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.