On one condition for the development of an isolated defect
UDC
539.375, 531.375DOI:
https://doi.org/10.31429/vestnik-18-2-8-13Abstract
In the case of a plane stress-strain state, a thermodynamically complete energy condition for the development of an isolated defect is obtained, generalizing the classical condition of A. Griffiths, for the case when destructive loads are applied both to the external contour of the body and to the contour of the isolated defect. This problem arises when modeling hydraulic fracturing of an oil reservoir under the influence of lateral pressure. Taking into account the entropy component of the released internal energy in the proposed brittle fracture condition determines the dependence of critical loads on the characteristic dimensions of the isolated defect, which takes into account the temperature and the linear coefficient of thermal expansion of the material. The A. Griffiths condition does not explicitly take into account the temperature and the linear coefficient of thermal expansion of the material and follows from the proposed condition if the entropy component of the internal energy is neglected.
References
- Griffith A.A. The phenomena of rupture and flow in solids // Philos. T. Roy. Soc. A. 1920. Vol. 211. P. 163–198.
- Griffith A.A. The theory of rupture // Proc. of the 1-st Int. Congr. On Appl. Mech. Delft. 1924 / J. Waltman. Jr., Delft. 1925. P. 55–63.
- Дунаев И.М., Дунаев В.И. Об энергетическом условии разрушения твердых тел // ДАН. 2000. Т. 372. № 1. С. 43-45. [Dunaev, I.M., Dunaev, V.I. Ob energeticheskom uslovii razrusheniya tverdykh tel [On the energy condition for the destruction of solids]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2000, vol. 372, no. 1, pp. 43–45. (In Russian)]
- Дунаев И.М., Дунаев В.И. Энергетическое условие разрушения твердых тел // Механика твердого тела. 2003. № 6. С. 69–81. [Dunaev, I.M., Dunaev, V.I. Energeticheskoe uslovie razrusheniya tverdykh tel [Energy condition for the destruction of solids]. Mekhanika tverdogo tela [Rigid body mechanics], 2003, no. 6, pp. 69–81. (In Russian)]
- Dunaev I.M., Dunaev V.I. Macroscopic Criterion for Brittle Fracture of Solids // Proc. of the 7-th EVROMECH. Solid Mechanics Conference 2009 Portugal, Lisbon. p. 117–118.
- Желтов Ю.П., Христианович С.А. О гидравлическом разрыве нефтеносного пласта // Известия академии наук СССР. Отделение техн. наук. 1955. № 5. С. 3–41. [Zheltov, Yu.P., Khristianovich, S.A. O gidravlicheskom razryve neftenosnogo plasta [On hydraulic fracturing of oil-bearing strata]. Izvestiya akademii nauk SSSR. Otdelenie tekhn. nauk [Izvestia of the Academy of Sciences of the USSR. Department of Engineering Sciences], 1955, no. 5, pp. 3–41. (In Russian)]
- Новацкий В. Динамические задачи термоупругости. М.: Мир, 1970. 256 с. [Novatskiy, V. Dinamicheskie zadachi termouprugosti [Dynamic problems of thermoelasticity]. Mir, Moscow, 1970. (In Russian)]
- Дунаев В.И., Терещенко И.А., Величко Е.И., Шиян С.И. Об одной математической модели в задаче гидроразрыва нефтеносного пласта // Строительство нефтяных и газовых скважин на суше и на море. 2020. № 10 (334). С. 39–41. [Dunaev, V.I., Tereshchenko, I.A., Velichko, E.I., Shiyan, S.I. Ob odnoy matematicheskoy modeli v zadache gidrorazryva neftenosnogo plasta [On one mathematical model in the problem of hydraulic fracturing of an oil-bearing reservoir]. Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more [Construction of oil and gas wells on land and at sea], 2020, no. 10 (334), pp. 39–41. (In Russian)]
- Безухов Н.И. Теория упругости и пластичности. М.: Гос. из-во технико-теоретической литературы, 1953. 420 с. [Bezukhov, N.I. Teoriya uprugosti i plastichnosti [The theory of elasticity and plasticity]. Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, Moscow, 1953. (In Russian)]
- Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 707 с. [Muskhelishvili, N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity]. Nauka, Moscow, 1966. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2021 Дунаев В.И., Терещенко И.А., Молдаванов С.Ю., Величко Е.И., Шиян С.И.
This work is licensed under a Creative Commons Attribution 4.0 International License.