Analytical method in the linear three-dimentional aerodynamics of a thin wing with winglets
UDC
533.69DOI:
https://doi.org/10.31429/vestnik-21-1-41-46Abstract
The paper presents an analytical method in the classical problem of flow around a thin rectangular plate with and without winglets. There is described the method for calculating inductive reactance of the thin plate. The method for calculating the suction force, to calculate the inductive reactance of the plate with winglets is considered. There is also described a discretization of equations, to calculate inductive reactance. Then we demonstrate a comparison of the aerodynamic quality for plates with and without winglets. After that, we give some conclusions about the influence of winglets on the aerodynamic quality of the thin plate with winglets, taking into account the suction force.
Keywords:
aerodynamics, thin rectangular plate, winglets, lifting force, aerodynamic qualityAcknowledgement
References
- Cunningham, K., A generic t-tail transport airplane simulation for high-angle-of-attack dynamics modeling investigations. In 2018 AIAA Modeling and Simulation Technologies Conference, Kissimmee, Florida, 2018.
- Fairley, G., McGovern, S., A kinematic/kinetic hybrid airplane simulator model. In ASME 2008 International Mechanical Engineering Congress and Exposition, pp. 11–20.
- Jaszczur, M., An investigation of the aerodynamic parameters for Solar Plane wing profile using CFD modeling. Computer Science, vol. 22, pp. 123–142.
- Белоцерковский, С.М., Лифанов, И.К., Численные методы в сингулярных интегральных уравнениях и их применение в аэродинамике, теории упругости, электродинамике. Москва, Наука, 1985. [Belotserkovsky, S.M., Lifanov, I.K., Chislennye metody v singulyarnykh integral'nykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike = Numerical methods in singular integral equations and their application in aerodynamics, elasticity theory, electrodynamics. Moscow, Nauka, 1985. (in Russian)]
- Devenport, W.J., Rife, M.C., Liapis, S.I., Gollin, G.J., The structure and development of a wing-tip vortex. Journal of Fluid Mechanics, 1996, vol. 312, pp. 67–106.
- Alkhafaji, A.J., Panatov, G.S., Boldyrev, A.S., Numerical analysis and optimization of a winglet sweep angle and winglet tip chord for improvement of aircraft flight performance. Diagnostyka, 2022, vol. 23, no. 2, Article ID 2022210.
- Sumbatyan, M.A., Samsonov, I.K., On the theory of thin lifting surface with winglets. Mechanics Research Communications, 2020, vol. 109. Article ID 103519.
- Самсонов, И.К., Сумбатян, М.А., О влиянии винглетов на аэродинамические свойства тонкого крыла. Известия вузов. Северо-Кавказский регион. Естественные науки, 2023, № 2, с. 38–47. [Samsonov, I.K., Sumbatyan, M.A., On the influence of winglets on the aerodynamic properties of a thin wing. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennye nauki = News of universities. North Caucasus region. Natural Sciences, 2023, No. 2, pp. 38–47. (in Russian)]
- Белоцерковский, С.М., Тонкая несущая поверхность в дозвуковом потоке газа. Москва, Наука, 1965. [Belotserkovsky, S.M., Tonkaya nesushchaya poverkhnost' v dozvukovom potoke gaza = Thin bearing surface in a subsonic gas flow. Moscow, Nauka, 1965. (in Russian)]
- Кочин, Н.Е., Теория крыла конечного размаха круговой формы в плане. ПММ, 1940, т. 4, вып. 1, с. 1–32. [Kochin, N.E., Theory of a finite-span wing with a circular planform. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 1940, vol. 4, iss. 1, pp. 1–32. (in Russian)]
- Седов, Л.И., Плоские задачи гидродинамики и аэродинамики. Москва, Наука, 1980. [Sedov, L.I., Ploskie zadachi gidrodinamiki i aerodinamiki = Plane problems of hydrodynamics and aerodynamics. Moscow, Nauka, 1980. (in Russian)]
- Белоцерковский, С.М., Лифанов, И.К., Численные методы в сингулярных интегральных уравнениях и их применение в аэродинамике, теории упругости, электродинамике. Москва, Наука, 1985. [Belotserkovsky, S.M., Lifanov, I.K., Chislennye metody v singulyarnykh integral'nykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike = Numerical methods in singular integral equations and their application in aerodynamics, elasticity theory, electrodynamics. Moscow, Nauka, 1985. (in Russian)]
- Шлихтинг, Г., Теория пограничного слоя. Москва, Наука, 1974. [Schlichting, G., Teoriya pogranichnogo sloya = Boundary Layer Theory. Moscow, Nauka, 1974. (in Russian)]
Downloads
Submitted
Published
How to Cite
Copyright (c) 2024 Samsonov I., Sumbatyan M.
This work is licensed under a Creative Commons Attribution 4.0 International License.