On one empirical model of nonlinear deformation of elastoplastic materials

Authors

  • Golovina N.Ya. Industrial University of Tyumen, Tyumen, Russian Federation

UDC

539.2/.6

DOI:

https://doi.org/10.31429/vestnik-17-3-48-55

Abstract

The idea develops that at different sections of the strain-stress curve, the elastoplastic properties of materials are determined by different deformation mechanisms and are described by different relations between strain and stress. Nonlinear strain-stress model of plastic material without hardening is considered, for which existence of two fundamentally different sections of non-zero length on strain-stress curve is postulated. The first section corresponds to Hooke's linear law. The boundary of the first is the point of the proportionality limit. The plastic deformation section begins behind this point and ends with another characteristic point of the strain-stress curve - the point of ultimate strength. In the second section of the strain-stress curve, the relationship between strain and stress is determined by power law. Using the example of a sample of 30 experimental points of the steel deformation curve, an engineering deformation curve corresponding to the formulated law 20ХГР constructed. Experimental data are processed using the standard least squares method. To accelerate the search for extreme point coordinates in a two-dimensional area, the compression operator method is used. The standard deviation for the proposed empirical law from the corresponding sample of experimental points was S0=0.02. The obtained accuracy allows using the formulated empirical model in practical engineering calculations.

Keywords:

Ramberg-Osgood law, strain curves of plastic materials, experimental data processing

Author Biography

  • Natalya Ya. Golovina

    канд. тех. наук, доцент кафедры "Эксплуатация транспортных и технологических машин" филиала Тюменского индустриального университета в г. Сургуте

References

  1. Надаи А. Пластичность и разрушение твердых тел. М.: Изд. иностранной лит., 1954. 648 с. [Nadai, A. Plasticity and destruction of solids. Vol. 1. Izdatel'stvo inostrannoy literatury, Moscow, 1954. (In Russian)]
  2. Надаи А. Пластичность. Механика пластического состояния вещества. М.: ОНТИ НКТП СССР, 1936. 280 с. [Nadai, A. Plastic. Mechanics of the plastic state of matter, Vol. 2, Joint Scientific and Technical Publishing House (ONTI) NKTP USSR. Main edition of general technical literature, Moscow, 1936. (In Russian)]
  3. Ильюшин А.А. Пластичность. Ч.1. Упруго-пластические деформации. М.: Ленинград: Гостехиздат, 1948. 376 с. [Ilyushin, A.A. Plastic, Leningrad: OGIZ, Moscow, 1948. (In Russian)]
  4. Ramberg W., Osgood W.R. Description of stress–strain curves by three parameters, National Advisory Committee For Aeronautics, Technical Note no 902, Washington DC, 1943.
  5. Belov P.A., Golovina N.Y. Generalization of the Ramberg–Osgood Model for Elastoplastic Materials // Journal of Materials Engineering and Performance. 2019. Vol. 12. P. 7342–7346. DOI: 10.1007/s11665-019-04422-3
  6. Mendelson A. Plasticity: Theory, and Application. Malabar: Krieger, 1968. 354 с.
  7. Papirno R. Goodness-of-Fit of the Ramberg-Osgood Analytic Stress-Strain Curve to Tensile Test Data // Journal of Testing and Evaluation. 1982. Vol. 10. Iss. 6. P. 263–268. DOI: 10.1520/JTE10264J
  8. Rasmussen K. Full-range stress-strain curves for stainless steel alloys // Journal of Constructional Steel Research. 2003. Vol. 59. Iss. 1. P. 47–61. DOI: 10.1016/S0143-974X(02)00018-4
  9. Liu C. Smoothing elastoplastic stress-strain curves obtained by a critical modification of conventional models // International Journal of Solids and Structures. 2003. Vol. 40. Iss. 9. P. 2121–2145.
  10. Quach W., Huang J. Stress-strain models for light gauge steels // Procedia Engineering. 2011. Vol. 14. P. 288–296.
  11. Zhang Z., Wu W., Chen D., Sun Q., Zhao W. New Formula Relating the Yield Stress-Strain with the Strength Coefficient and the Strain-Hardening Exponent // Journal of Materials Engineering and Performance. 2004. Vol. 13. P. 509–512. DOI: 10.1361/10599490420070
  12. Головина Н.Я. Вынужденные колебания гибких металлических трубопроводов машин и агрегатов: Автореф. дисс. ... канд. тех. наук. Тюмень. ТюмГНГУ. 2002. 133 с. [Golovina, N.Ya. Forced vibrations of flexible metal pipelines of machines and units, Cand. tech. sci. diss. Tyumen, 2002. (In Russian)]
  13. Arrayago I., Real E., Gardner L. Description of stress-strain curves for stainless steel alloys // Materials and Design, 2015. Vol. 87. P. 540–552. DOI: 10.1016/j.matdes.2015.08.001
  14. Махутов Н.А. Сила и безопасность: фундаментальные и прикладные исследования. Новосибирск: Наука, 2008. 522 с. [Makhutov, N.A. Strength and Safety: Basic and Applied Research. Nauka, Novosibirsk, 2008. (In Russian)]

Downloads

Issue

Pages

48-55

Section

Physics

Dates

Submitted

July 21, 2020

Accepted

August 2, 2020

Published

September 28, 2020

How to Cite

[1]
Golovina, N.Y., On one empirical model of nonlinear deformation of elastoplastic materials. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 3, pp. 48–55. DOI: 10.31429/vestnik-17-3-48-55

Similar Articles

1-10 of 197

You may also start an advanced similarity search for this article.