Electrophoresis of microparticle with hydrophobic surface in strong electric field

Authors

  • Frants E.A. Financial University under the Government of the Russian Federation, Krasnodar, Russian Federation
  • Krylov A.A. Kuban State University, Krasnodar, Russian Federation
  • Demekhin E.A. Financial University under the Government of the Russian Federation, Krasnodar; Lomonosov Moscow State University, Moscow, Russian Federation

UDC

532.5.013:532.516:538.5:544.6

EDN

BIRUDM

DOI:

10.31429/vestnik-21-2-80-92

Abstract

The study addresses the problem of electrophoresis of a dielectric particle with a hydrophobic surface. A complete dimensional formulation of the problem is presented, followed by a transition to a dimensionless formulation. The main method of investigation is the analytical solution of the problem, conducted separately for the electrical and the hydrodynamic components. The primary task was to derive a relationship for the electrophoresis velocity of the micro-particle with a hydrophobic surface based on key parameters of the problem: the intensity of the external electric field $E_{\infty}$, the slip length $\beta$, the surface charge density $\sigma$, the Debye number $\nu$, and the ratio of the dielectric permittivities of the particle and the medium $\delta$. Additionally, the study includes a comparison of the analytically obtained electrophoresis velocity of the hydrophobic particle with the results of numerical modeling of electrophoresis of a dielectric particle and an assessment of the contribution of the slip length parameter to the increase in electrophoresis velocity. The influence of the parameters $\sigma$ and $\delta$ on the electrophoresis velocity is also demonstrated separately.

Keywords:

electrophoresis, hydrophobic surface, sliding speed, high electric field

Funding information

This work was supported by the Russian Science Foundation (project No. 22-79-00082).

Authors info

  • Elizaveta A. Frants

    канд. физ.-мат. наук, младший научный сотрудник лаборатории электро- и гидродинамики микро- и наномасштабов, Финансовый университет при Правительстве РФ

  • Artem A. Krylov

    студент факультета компьютерных технологий и прикладной математики Кубанского государственного университета

  • Evgeny A. Demekhin

    д-р. физ.-мат. наук, заведующий лабораторией электро- и гидродинамики микро- и наномасштабов, Финансовый университет при Правительстве РФ

References

  1. Stone, H.A., Stroock, A., Ajdari, A., Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., 2004, vol. 36, pp. 381–411.
  2. Squires, T.M., Quake, S., Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, vol. 77, p. 977. DOI: 10.1103/RevModPhys.77.977
  3. Lauga, E., Brenner, M.P., Stone, H.A., Microfluidics: The no-slip boundary condition. In: Tropea, C., Yarin, A., Foss, J.F. (eds), Handbook of Experimental Fluid Dynamics. Springer, New York, 2007, pp. 1219–1240. DOI: 10.1007/978-3-540-30299-519
  4. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.-J., Craig, V.S.J., Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys., 2005, vol. 68, p. 2859. DOI: 10.1088/0034-4885/68/12/R05
  5. Vinogradova, O., Slippage of water over hydrophobic surfaces. Int. J. Min. Process., 1999, vol 56, pp. 31–60. DOI: 10.1016/S0301-7516(98)00041-6
  6. Churaev, N.V., Ralston, J., Sergeeva, I.P., Sobolev, V.D., Electrokinetic properties of methylated quartz capillaries. Adv. Colloid Interface Sci., 2002б vol. 96, p. 265. DOI: 10.1016/s0001-8686(01)00084-7
  7. Bouzigues, C.I., Tabeling, P., Bocquet, L., Nanofluidics in the Debye Layer at Hydrophilic and Hydrophobic Surfaces. Phys. Rev. Lett., 2008, vol. 101, art. 114503. DOI: 10.1103/PhysRevLett.101.114503
  8. Ajdari, A., Bocquet, L., Giant Amplification of Interfacially Driven Transport by Hydrodynamic Slip: Diffusio-Osmosis and Beyond. Phys. Rev. Lett., 2006, vol. 96, art. 186102. DOI: 10.1103/PhysRevLett.96.186102
  9. Khair, A.S., Squires, T.M., The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Physics of Fluids, 2009, vol. 21, art. 042001. DOI: 10.1063/1.3116664
  10. O'Brien, R.W., White, L.R., Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc., Faraday Trans. 2, 1978, vol. 74, pp. 1607–1626. DOI: 10.1039/F29787401607
  11. Park, H.M., Electrophoresis of particles with Navier velocity slip. Electrophoresis, 2013, vol. 34, p. 651–661. DOI: 10.1002/elps.201200484
  12. Bentor, J., Dort, H., Chitrao, R.A., Zhang, Y., Xuan, X., Nonlinear electrophoresis of dielectric particles in Newtonian fluids. Electrophoresis, 2023, vol. 44, iss. 11–12, pp. 938–946. DOI: 10.1002/elps.202200213
  13. Frants, E., Amiroudine, S. Demekhin, E., DNS of Nonlinear Electrophoresis. Microgravity Sci. Technol., 2024, vol. 36, iss. 21. DOI: 10.1007/s12217-024-10108-w

Downloads

Download data is not yet available.

Issue

Pages

80-92

Section

Physics

Dates

Submitted

May 12, 2024

Accepted

May 18, 2024

Published

June 28, 2024

How to Cite

[1]
Frants, E.A., Krylov, A.A., Demekhin, E.A., Electrophoresis of microparticle with hydrophobic surface in strong electric field. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2024, т. 21, № 2, pp. 80–92. DOI: 10.31429/vestnik-21-2-80-92

Similar Articles

1-10 of 132

You may also start an advanced similarity search for this article.