Nonstoichiometry defects and electromagnetic properties of La0.55Sr0.35Ce0.10Mn0.90Co0.10O3 manganites with different oxygen content

Authors

UDC

538.91+538.95

EDN

AZKZVQ

DOI:

10.31429/vestnik-22-2-89-95

Abstract

Single-phase ceramic samples of La0.55Sr0.35Ce0.10Mn0.90Co0.10O3 manganites with rhombohedral structure were synthesized. Different oxygen concentrations ($\gamma =0$, $\gamma =-0.022$, $\gamma =0.002$) were achieved by heat treatment of sintered (initial) samples at the temperature of 1223 K and different partial pressure of oxygen in the gas phase. By comparing calculated and experimental values of the unit cell volume, concentrations of Co2+ and Co3+ ions in the obtained samples were found. In the stoichiometric manganite ($\gamma =0$) and in the sample annealed in oxygen ($\gamma =0.002$), cobalt is present in the Co3+ state. The sample annealed in high vacuum ($\gamma =-0.022$) contains Co2+ (10%) and Co3+ (90%) ions. Manganite annealed in oxygen has the highest values of magnetization, Curie point, metal-semiconductor transition temperature, and conductivity, which is due to the higher concentration of Mn3+ and Mn4+ ion pairs in this sample. Manganite annealed in high vacuum, containing significant concentration of oxygen vacancies ($\delta =0.022$) and Co2+ ions, has a minimum Curie temperature and a fairly low metal-semiconductor transition temperature. The maximum width of the temperature range of ferromagnetic--paramagnetic transition indicates a high inhomogeneity of the distribution of different valence ions in this sample due to the Coulomb interaction. The initial oxygen-deficient sample ($\gamma =-0.006$) also has similar characteristics.

Keywords:

ceramic samples, rhombohedral structure, valence state of ions, cation and anion vacancies, magnetization, Curie point, metal-semiconductor transition, inhomogeneities

Funding information

The study was carried out at the expense of the Russian Science Foundation grant (23-22-10005).

Authors info

  • Aleksej G. Badelin

    канд. физ.-мат. наук, доцент кафедры технологии материалов и промышленной инженерии Астраханского государственного университета им. В.Н. Татищева

  • Zamira R. Datskaya

    канд. физ.-мат. наук, доцент, доцент кафедры технологии материалов и промышленной инженерии Астраханского государственного университета им. В.Н. Татищева

  • Vladimir K. Karpasyuk

    д-р физ.-мат. наук, профессор, почетный профессор Астраханского государственного университета им. В.Н. Татищева

  • Elena A. Korneeva

    ассистент кафедры технологии материалов и промышленной инженерии Астраханского государственного университета им. В.Н. Татищева

  • Svetlana Kh. Estemirova

    канд. хим. наук, старший научный сотрудник лаборатории статики и кинетики процессов Института металлургии Уральского отделения РАН

References

  1. Belich, N., Udalova, N., Semenova, A., Petrov, A., Fateev, S., Tarasov, A., Goodilin, E., Perovskite puzzle for revolutionary functional materials. Front. Chem., 2020, vol. 8, p. 550625. DOI: 10.3389/fchem.2020.550625
  2. Krichene, A., Boujelben, W., Multifunctionality of phase-separated manganites. J. Supercond. Nov. Magn, 2022, vol. 35, pp. 2609–2613. DOI: 10.1007/s10948-022-06374-7
  3. Bebenin, N.G., Zainullina, R.I., Ustinov, V.V., Colossal magnetoresistance manganites. Physics-Uspekhi, 2018, vol. 61, no. 8, pp. 719–738. DOI: 10.3367/UFNe.2017.07.038180
  4. Баделин, А.Г., Бич, Г.В., Карпасюк, В.К., Шапошников, П.А., Эстемирова, С.Х., Нелинейная связь между током и напряжением в допированных никелем лантан-стронциевых поликристаллических манганитах. Экологический вестник научных центров Черноморского экономического сотрудничества, 2022, т. 19, № 1, с. 76–82. [Badelin, A.G., Bich, G.V., Karpasyuk, V.K., Shaposhnikov, P.A., Estemirova, S.H., Nonlinear relationship between current and voltage in nickel-doped lanthanum-strontium polycrystalline manganites. Ekologicheskij vestnik nauchnyh centrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2022, vol. 19, no. 1, pp. 76–82. (in Russian)] DOI: 10.31429/vestnik-19-1-76-82
  5. Mizusaki, J., Mori. N., Takai, H., Yonemura, Y., Minamiue, H., Tagawa, H., Dokiya, M., Inaba H., Naraya K., Sasamoto T., Hashimoto T., Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnО3+d. Solid State Ionics, 2000, vol. 129, pp. 163–-177.
  6. Karpasyuk, V.K., Badelin, A.G., Merkulov, D. I., Derzhavin, I.M., Estemirova, S.Kh., Unusual properties and features of oxygen nonstoichiometry of La-Sr manganites with manganese replacement by a combination of nickel and germanium. J. Phys.: Conf. Ser., 2019, vol. 1347, ArticleID 012036. DOI: 10.1088/1742-6596/1347/1/012036
  7. Dagotto, E., Hotta. T., Moreo, A., Colossal magnetoresistant materials: the key role of phase separation. Physics reports, 2001, vol. 344, pp. 1–153. DOI: 10.1016/S0370-1573(00)00121-6
  8. Moualhi, Y., Alamri Mona, A., Kossi, S.El, Dhahri, R., Al-Syadi, A.M., Kenanyd, E.B., Rahmouni, H., Investigation of the structural, magnetic, and electrical characteristics of the La0.7Sr0.25Na0.05Mn0.8Ti0.2O3. RSC Adv., 2024, vol. 14, pp. 29271–29281.
  9. Karpasyuk, V.K., Badelin, A.G., Datskaya, Z.R., Merkulov, D.I., Estemirova, S.Kh., Properties of La–Sr Manganites with Combined Substitution of Different Valence Ions for Strontium and Manganese. Inorganic Materials: Applied Research, 2018, vol. 9, no. 2, pp. 201–206.
  10. Kowalik, M., Tokarz, W., Kolodziejczyk A., Electronic band structures of La2/3Pb1/3Mn2/3(Fe,Co,Ni)1/3O3. Acta Phys. Pol. A, 2015, vol. 127, no. 2, pp. 251–253. DOI: 10.12693/APhysPolA.127.251
  11. Raychaudhuri, P., Mitra, C., Mann, P.D.A., Wirth, S., Phase diagram and Hall effect of the electron doped manganite La1 -xCexMnO3. J. Appl. Phys., 2003, vol. 93, pp. 8328–8330.
  12. Mitra, C., Hu, Z., Raychaudhuri, P., Wirth, S., Csiszar, S.I., Hsieh, H.H., Lin, H.-J., Chen, C.T., Tjeng, L.H., Direct observation of electron doping in (La0.7Ce0.3)MnO3 using X-RAY absorption spectroscopy. Phys. Rev. B, 2003, vol. 67, pp. 092404–092407.
  13. Han, S.W., Kang, J.-S., Kim, K.H., Lee, J.D., Kim, J.H., Wi, S.C., Mitra, C., Raychaudhuri, P., Wirth, S., Kim, K.J., Kim, B.S., Jeong, J.I., Kwon, S.K., Min, B.I., Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite La0.7Ce0.3MnO3. Phys. Rev. B, 2004, vol. 69, p. 104406–104412.
  14. Badelin, A.G., Karpasyuk, V.K., Estemirova, S.Kh., Comparative study of the structure and electromagnetic characteristics of manganites doped with cation pairs (Fe,Zn), (Fe,Co), (Fe,Mg). Bulletin of the Russian Academy of Sciences: Physics, 2024, vol. 88, no. 7, pp. 1172–1175.
  15. Карпасюк, В.К., Баделин, А.Г., Структура и магнитные характеристики лантан-стронциевых манганитов с замещением марганца разновалентными ионами. Астрахань, Издатель Сорокин Р.В., 2016. [Karpasyuk, V.K., Badelin, A.G., Struktura i magnitnye harakteristiki lantan-stroncievyh manganitov s zamesheniem marganca raznovalentnymi ionami = Structure and magnetic characteristics of lanthanum-strontium manganites with manganese substitution by heterovalent ions. Astrahan, Izdatel Sorokin R.V., 2016. (in Russian)]
  16. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.
  17. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 1976, vol. 32, pp. 751–767. DOI: 10.1107/S0567739476001551
  18. Воробьев, Ю.П., Мень, А.Н., Фетисов, В.Б., Расчет и прогнозирование свойств оксидов. Москва, Наука, 1983. [Vorob'ev, Yu.P., Men', A.N., Fetisov, V.B., Raschet i prognozirovanie svoystv oksidov = Calculation and Prediction of Oxides Properties. Moscow, Nauka, 1983. (in Russian)]
  19. Кеслер, Я.А., Межатомные расстояния в оксидах, сульфидах и селенидах с плотнейшей упаковкой. Неорганические материалы, 1993, т. 29, № 2, с. 165–172. [Kesler, Ya.A., Interatomic distances in oxides, sulfides and selenides with closest-packed structure. Neorganicheskie materialy = Inorganic materials, 1993, vol. 29, no. 2, pp. 165–172. (in Russian)]
  20. Мусаева, З.Р., Влияние состава и дефектов нестехиометрии на электромагнитные свойства перовскитоподобных манганитов системы La1-cSrcMn1-x-yNixTiyO3+γ: дисс. ... канд. физ.-мат. наук, Астрахань, 2007. [Musaeva, Z.R., Vliyanie sostava i defektov nestehiometrii na elektromagnitnye svojstva perovskitopodobnyh manganitov sistemy La1-cSr_cMn1-x-yNixTiyO3+γ = The influence of composition and non-stoichiometry defects on the electromagnetic properties of perovskite-like manganites of the La1-cSrcMn1-x-yNixTyO3+γ system: diss. cand. phis.-math. science, Astrahan, 2007. (in Russian)]

Downloads

Download data is not yet available.

Issue

Pages

89-95

Section

Physics

Dates

Submitted

May 30, 2025

Accepted

June 19, 2025

Published

June 30, 2025

How to Cite

[1]
Badelin, A.G., Datskaya, Z.R., Karpasyuk, V.K., Korneeva, E.A., Estemirova, S.K., Nonstoichiometry defects and electromagnetic properties of La0.55Sr0.35Ce0.10Mn0.90Co0.10O3+γ manganites with different oxygen content. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2025, т. 22, № 2, pp. 89–95. DOI: 10.31429/vestnik-22-2-89-95

Similar Articles

1-10 of 1091

You may also start an advanced similarity search for this article.