Occurrence of rotational regimes of thermo-capillary fluid flows near the free surface

Authors

  • Batishchev V.A. Southern Federal University, Rostov-on-Don, Russian Federation
  • Blagov A.V. Southern Federal University, Rostov-on-Don, Russian Federation
  • Nikolaenko Yu.S. Southern Federal University, Rostov-on-Don, Russian Federation

UDC

536.22

Abstract

The nonlinear boundary layers caused by the non-uniform heating of the free surface, were studied intensively at the end of the last century in connection with the experiments in space. For the Marangoni boundary layers self-similar solutions were found, the conditions for the existence and uniqueness of solutions were studied and numerous numerical calculations were conducted. It was shown for the layers of finite thickness that the non-uniform heating of the free surface can lead to the rotation of an inhomogeneous fluid over the entire thickness of the layer. This paper shows that under the positive temperature gradient there can occur a rotation of the fluid as a result of bifurcation in a thin boundary layer near the free surface only, the fluid out of this layer does not rotate. In the case of the negative temperature gradient rotational modes are not detected. For the stationary axisymmetric thermocapillary flows of liquid there were obtained self-similar solutions of the Marangoni boundary layer equations with the power-law dependence on the temperature of the free surface of the radial coordinate. The speed of the outer non-viscous non-swirling flow is of the same order as the velocity in the boundary layer. With a positive temperature gradient along the free surface, the equations of the boundary layer have two 'basic' solutions describing thermocapillary non-swirling fluid flows. These solutions exist if the speed of the external inviscid flow on the free surface exceeds a critical value. The bifurcation diagram was calculated and two secondary modes, which differ from the 'basic' modes by the presence of rotation around the axis of symmetry, were found. Under a negative surface temperature gradient there was found only one 'main' mode, bifurcation points and secondary modes were not detected.

Keywords:

boundary layer, free surface, bifurcation of the rotation

Author info

  • Vladimir A. Batishchev

    д-р физ.-мат. наук, профессор кафедры теоретической и компьютерной гидродинамики Южного федерального университета

  • Aleksandr V. Blagov

    студент факультета математики, механики и компьютерных наук Южного федерального университета

  • Yuriy S. Nikolaenko

    аспирант кафедры теоретической и компьютерной гидродинамики Южного федерального университета

References

  1. Шкадов В.Я. К образованию волн на поверхности вязкой тяжелой жидкости под действием касательного напряжения // Изв. АН СССР. Механика жидкости и газа. 1970. №3. С. 133-137. [Shkadov V.Ja. K obrazovaniju voln na poverhnosti vjazkoj tjazheloj zhidkosti pod dejstviem kasatel'nogo naprjazhenija [To the formation of waves on the surface of a heavy viscous fluid under the action of shear stress]. Izv. AN SSSR. Mehanika zhidkosti i gaza [Proc. of the Academy of Sciences of the USSR. Fluid Mechanics], 1970, no. 3, pp. 133-137. (In Russian)]
  2. Napolitano L.G. Marangoni boundary layers// Proc. III European Symp. on Material Sci. in Space. Grenoble. 1979. P. 313-315.
  3. Пухначев В.В. Групповой анализ уравнений нестационарного пограничного слоя Марангони // Докл. АН СССР. 1984. Т. 279. №5. C. 1061-1064. [Puhnachev V.V. Gruppovoj analiz uravnenij nestacionarnogo pogranichnogo sloja Marangoni [Group analysis of equations of unsteady boundary layer Marangoni]. Dokl. AN SSSR [Reports of the Academy of Sciences of the USSR], 1984, vol. 279, no. 5, pp. 1061-1064. (In Russian)]
  4. Батищев В.А. Асимптотика неравномерно нагретой свободной границы капиллярной жидкости при больших числах Марангони // Прикладная математика и механика. 1989. Т. 53. Вып. 3. С. 425-432. [Batishhev V.A. Asimptotika neravnomerno nagretoj svobodnoj granicy kapilljarnoj zhidkosti pri bol'shih chislah Marangoni [Asymptotics of non-uniformly heated free boundary capillary fluid with large numbers Marangoni]. Prikladnaja matematika i mehanika [Applied Mathematics and Mechanics], 1989, vol. 53, no. 3, pp. 425-432. (In Russian)]
  5. Батищев В.А., Хорошунова Е.В. Возникновение вращательных режимов при термокапиллярном течении неоднородной жидкости в слое // Прикладная математика и механика. 2000. Т. 64. Вып. 4. С. 560-568. [Batishhev V.A., Horoshunova E.V. Vozniknovenie vrashhatel'nyh rezhimov pri termokapilljarnom techenii neodnorodnoj zhidkosti v sloe [The emergence of rotational modes at thermocapillary for inhomogeneous fluid layer]. Prikladnaja matematika i mehanika [Applied Mathematics and Mechanics], 2000, vol. 64, no. 4, pp. 560-568. (In Russian)]

Downloads

Issue

Pages

25-30

Section

Article

Dates

Submitted

January 20, 2014

Accepted

March 16, 2014

Published

June 17, 2014

How to Cite

[1]
Batishchev, V.A., Blagov, A.V., Nikolaenko, Y.S., Occurrence of rotational regimes of thermo-capillary fluid flows near the free surface. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, № 2, pp. 25–30.

Similar Articles

1-10 of 88

You may also start an advanced similarity search for this article.