Plane waves and Green's functions in piezoelectric space under moving oscillating sources
UDC
539.3EDN
TWTYNHAbstract
The problems of harmonic concentrated point source motion with constant velocity in unbounded homogeneous piezoelectric (electroelastic) three-dimensional medium are considered. The properties of plane waves and their characteristic surfaces such as phase velocity, slowness and ray or group velocity are established in a moving coordinate system. The use of the principle of limiting absorption, Fourier integral transform techniques and the properties of plane waves was enabled to obtain an explicit representation for harmonic piezoelectric Green's tensor for all behaviors of the source motion as a sum of the integrals over the surface of a unit sphere. The quasistatic and dynamic components of the Green's tensor are also extracted. The multidimensional stationary phase method is employed to derive an asymptotic approximation at the far field. Simple formulae for the Poynting energy flux vectors for moving and stationary observers are also presented. It was noted that in far zone the wave fields are subdivided into separate spherical waves under kinematics and energy. It is shown that motion brings some difference in the far field properties, exemplified by the modification of the wave propagation zones and the change in their number, emergence of fast and slow waves under trans- and superseismic motions and etc. It is noted that, as in other problems with trans- and superseismic moving sources, the slow waves in the piezoelectric space transfer the negative energy, measured by moving observer.
Keywords:
piezoelectricity, fundamental solutions, moving oscillating source, plane waves, far field, group velocity, wave energyFunding information
Работа второго автора выполнена при поддержке проекта № 1105 организации проведения научных исследований в рамках базовой части задания на выполнение государственных работ в сфере научной деятельности Минобрнауки России.
References
- Белоконь А.В. Колебания упругой неоднородной полосы, вызванные движущимися нагрузками // ПММ. 1982. Т. 46. № 2. C. 296-302. [Belokon A.V. Oscillations of an elastic inhomogeneous strip caused by moving loads. Journal of Applied Mathematics and Mechanics (PMM), 1982, vol. 46, no. 2, pp. 225-230. doi: 10.1016/0021-8928(82)90142-3]
- Белоконь А.В., Ворович И.И. О некоторых закономерностях образования волновых полей в анизотропном слое при пульсирующей движущейся нагрузке // Мех. и научн.-техн. прогресс. Т. 3. М., 1988. С. 215-222. [Belokon A.V., Vorovich I.I. O nekotoryih zakonomernostyah obrazovaniya volnovyih poley v anizotropnom sloe pri pulsiruyuschey dvizhuscheysya nagruzke [About some regularities of generation of wave fields in anisotropic layer under moving pulsating load]. Mehanika i nauchno-tehnicheskiy progress [Mechanics and scientific and technical progress], 1988, vol. 3, pp. 215-222. [In Russian]]
- Белоконь А.В., Наседкин А.В. Энергетика волн, генерируемых подвижными источниками // Акуст. Ж. 1993. Т. 39, № 3. С. 421-427. [Belokon A.V., Nasedkin A.V. Energetika voln, generiruemyih podvizhnyimi istochnikami [Energy characteristics of wave generated by moving sources]. Akusticheskij Zhurnal [Russian Physical Acoustics], 1993, vol. 39, no. 1, pp. 421-427. [In Russian]]
- Калинина Т.И., Наседкин А.В. Фундаментальные решения в двумерных задачах электроупругости при движущихся осциллирующих источниках // Известия вузов. Северо-Кавказский регион. Естеств. Науки. 2014. № 6 (184). С. 16-23. [Kalinina T.I., Nasedkin A.V. Fundamentalnyie resheniya v dvumernyih zadachah elektrouprugosti pri dvizhuschihsya ostsilliruyuschih istochnikah [Fundamental solutions in two-dimensional electroelastic problems under moving oscillating sources]. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennyie Nauki [Russian Izvestiya, North-Caucas. Region. Ser. Natural Sciences], 2014, no. 6 (184), pp. 16-23. [In Russian]]
- Белоконь А.В., Наседкин А.В. Фундаментальные решения в задачах электроупругости при установившихся колебаниях // Известия вузов. Северо-Кавказский регион. Естеств. Науки. 2001. Спецвыпуск. С. 23-25. [elokon A.V., Nasedkin A.V. Fundamentalnye reshenija v zadachah jelektrouprugosti pri ustanovivshihsja kolebanijah [The fundamental solutions for harmonic problems of electroelasticity]. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennyie Nauki [Russian Izvestiya, North-Caucas. Region. Ser. Natural Sciences], 2001, Special issue, pp. 23-25. [In Russian]]
- Khutoryansky N.M., Sosa H. Dynamic representation formulas and fundamental solutions for piezoelectricity // Int. J. Solids Struct. 1995. V. 32. P. 3307-3325. doi: 10.1016/0020-7683(94)00308-J
- Norris A.N. Dynamic Green's functions in anisotropic piezoelectric, thermoelastic and poroelastic solids // Proc. Roy. Soc. London. A. 1994. Vol. 447. No. 1929. P. 175-188. doi: 10.1098/rspa.1994.0134
- Wang C.-Y., Zhang Ch. 3-D and 2-D Dynamic Green's functions and time-domain BIEs for piezoelectric solids // Eng. Anal. Bound. Elem. 2005. V. 29. P. 454-465. doi: 10.1016/j.enganabound.2005.01.006
- Дьелесан Э., Руайе Д. Упругие волны в твердых телах. Применение для обработки сигналов. М.: Наука, 1982. 424 с. [Dieulesaint E., Royer D. Ondes elastiques dans les solides. Application au traitement du signal. Paris: Masson, 1974, 407 p.]
- Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 c. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannyie zadachi teorii uprugosti dlya neklassicheskih oblastey [Dynamic mixed problem of elasticity theory for nonclassical areas]. Moscow, Nauka, 1979, 320 p. [In Russian]]
- Наседкин А.В. Волновое поле движущегося гармонического источника в анизотропной упругой среде // Труды XXVIII Летней Школы "Актуальные проблемы механики", г. С.-Петербург (Репино), 1-10 июня 2000. / Под ред. Индейцева Д.А. СПб.: ИПМаш РАН, 2001. Т. 2. С. 66-79. [Nasedkin A.V. Volnovoe pole dvizhuschegosya garmonicheskogo istochnika v anizotropnoy uprugoy srede [Wave field of moving harmonic source in anisotropic elastic medium]. Trudyi XXVIII Letney Shkolyi "Aktualnyie problemyi mehaniki", [Proc. XXVIII Summer School "Actual Problems in Mechanics", Russia, St.Petersburg (Repino), June 1-10, 2000 / Ed. D.A. Indeitsev, St.Petersburg, IPME RAS, 2001, vol. 2, pp. 66-79. [In Russian]]
- Hanyga A. Point source in anisotropic elastic medium // Gerlands Beitr. Geophysik. Leipzig. 1984. Vol. 93. No. 6. P. 463-479.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2015 Калинина Т.И., Наседкин А.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.