Analysis the model of co-existing of species, which competing on spatially inhomogeneous area
UDC
519.63EDN
TWTYNRAbstract
Modeling of population dynamics on the inhomogeneous area is based on a system of nonlinear parabolic equations with variable coefficients. We apply the theory cosymmetry to analyze different scenario of coexistence of populations consuming a single resource. Appearence of a continuous family of steady states is found under the some conditions on the parameters of diffusion and growth. Theoretical analysis is justified by computer simulations based on the method of lines and staggered grids scheme. The case of two populations on the one-dimensional habitat (ring) is studied numerically. It was found that after destruction of cosymmetry the family of steady states may transform to a stable configuration of coexisting species. The corresponding maps of growth parameters are presented.
Keywords:
population dynamics, nonlinear parabolic equations, cosymmetry, carrying capacity, method of linesFunding information
Исследование проводилось при финансовой поддержке РФФИ (14-01-00470).
References
- Murray J.D. Mathematical Biology II: Spatial Models and Biomedical Applications. New York: Springer, 2003. 811 p.
- Cantrell R.S., Cosner C. Spatial Ecology via Reaction-Diffusion Equations. Wiley, John and Sons Inc., 2003. 428 p.
- Dockery J., Hutson V., Mischaikow K., Pernarowski M. The evolution of slow dispersal rates: a reaction–diffusion model // J. Math. Biol. 1998. Vol. 37. P. 61-83.
- Гаузе Г.Ф. Борьба за существование. М.: Ижевск: Ин-т компьютерных исслед., 2002, 234 с. [Gauze G.F. The struggle for existence, New York, Dover Publising House, 2003. 163 p.]
- Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества. М.: Мир, 1989. Т. 1. 667 с.; Т. 2. 477 с. [Begon M., Harper J., Taunsend K. Ecology: individuals, populations and communities. Oxford, Blackwell Scientific Publications, 1987, 876 p.]
- Белотелов Н.В., Лобанов А.И. Популяционные модели с нелинейной диффузией // Математическое моделирование. 1997. Т. 9. № 12. С. 43-56. [Belotelov N.V., Lobanov A.I. Populyatsionnye modeli s nelineynoy diffuziey [Population models with non-linear diffusion]. Matematicheskoe modelirovanie [Matemathical Modelling], 1997, vol. 9, № 12, pp. 43-56. (In Russian)]
- Cantrell R.S., Cosner C., Lou Y., Xie C. Random dispersal versus fitness-dependent dispersal // J. Differential Equations, 2013. Vol. 254. P. 2905-2941.
- Kinezaki N., Kawasaki K., Shigesada N. Spatial dynamics of invasion in sinusoidally varying environments // Popul Ecol., 2006. Vol. 48. P. 263-270.
- Ковалева Е.С., Цибулин В.Г., Фришмут К. Семейство стационарных режимов в модели динамики популяций // Сиб. журн. индустр. математики. 2009. Т. XII. № 1(37). C. 98-107. [Kovaleva E.S., Tsybulin V.G., Frischmuth K. Semeystvo stacionarnyh rejimov v modeli dinamiki populyaciy [The family of stationary regimes in a model of population dynamics]. Sibirskiy zhurnal industrial'noy matematiki [Siberian journal of industrial mathematics], 2011, vol. XII, no. 1(37), pp. 98-107. (In Russian)]
- Будянский А.В., Цибулин В.Г. Моделирование пространственно-временной миграции близкородственных популяций // Компьютерные исследования и моделирование. 2011. Т. 3. № 4. С.477-488. [Budyanskiy A.V., Tsybulin V.G. Modelirovanie prostranstvenno-vremennoy migratsii blizkorodstvennykh populyatsiy [Modeling of spatial-temporal migration for closely related species]. Komp'yuternye issledovaniya i modelirovanie [Computer Research and Modelling], 2011, vol. 3, no. 4, pp. 477-488. (In Russian)]
- Юдович В.И. Косимметрия, вырождение решений операторных уравнений, возникновение фильтрационной конвекции // Математические заметки. 1991, Т. 49. Вып. 5. С. 142-148. [Yudovich V.I. Kosimmetriya, vyrozhdenie resheniy operatornykh uravneniy, vozniknovenie fil'tratsionnoy konvektsii [Cosymmetry, degeneration of solutions of operator equations, and the onset of filtration convection]. Matematicheskie zametki [Math. Notes], vol. 49, 1991, pp. 142-148. (In Russian)]
- Юдович В.И. О бифуркациях при возмущениях, нарушающих косимметрию // ДАН. 2004. Т. 398. № 1. С. 57-61. [Yudovich V.I. Bifurcations under perturbations violating cosymmetry. Dokl. Phys., 2004, vol. 49, no. 9, pp. 522-526.]
- Kovaleva E.S., Tsybulin V.G., Frischmuth K. Family of equilibria in a population kinetics model and its collapse // Nonlinear Analysis: Real World App. 2011. Vol. 12. P. 146-155.
- Будянский А.В., Кругликов М.Г., Цибулин В.Г. Численное исследование сосуществования популяций в одной экологической нише // Вестник ДГТУ. 2014. Т. 14. № 2. С. 28-35. [Budyansky A.V., Kruglikov M.G., Tsybulin V.G. Chislennoe issledovanie sosushchestvovaniya populyatsiy v odnoy ekologicheskoy nishe [Numerical study of coexistence of populations in an environmental niche]. Vestnik DGTU [Proc. of DGTU], 2014, vol. 14, no. 2, pp. 28-35. (In Russian)]
- Klinka D.R., Reimchen T.E. Adaptive coat colour polymorphism in the Kermode bear of coastal British Columbia // Biol. J. Linnean Society. 2009. Vol. 98. P. 479-488.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2015 Кругликов М.Г., Цибулин В.Г.

This work is licensed under a Creative Commons Attribution 4.0 International License.